

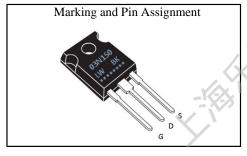
General Description:

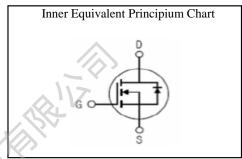
The LW03N150BK uses advanced VDMOS technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. The package form is TO-247, which accords with the ROHS standard.

Features:

- Fast Switching
- Low Gate Charge and R_{DS(ON)}
- Low Reverse transfer capacitances

Applications:


- Power switching application
- Hard switched and high frequency circuits


100% DVDS Tested 100% Avalanche Tested

V_{DSS} 1500 V I_{D} 3.0 A P_{D} (T_{C} =25°C) 140 W $R_{DS(ON) TYPE}$ 5.6 Ω

Package Marking and Ordering Information:

Marking	Part Number	Package	Packing	Qty.
03N150/LW BK/D.C.	LW03N150BK	TO-247	Tube	30 Pcs

Absolute Maximum Ratings:

Symbol	Parameter		Value	Units
$V_{ m DSS}$	Drain-to-Source Voltage		1500	V
ī	Continuous Drain Current	$T_{\rm C}$ =25 $^{\circ}{\rm C}$	3.0	A
I_D	Continuous Drain Current	$T_{\rm C}$ =100°C	1.8	A
I_{DM}^{a1}	Pulsed Drain Current		12	A
E_{AS}^{a2}	Single pulse avalanche energy		179	mJ
V_{GS}	Gate-to-Source Voltage		±20	V
P_{D}	Power Dissipation		140	W
T_{J}, T_{STG}	Operating Junction and Storage Tem	perature Range	150, -55 to 150	°C
TL	Maximum Temperature for Solderi	ng	260	C

Thermal Characteristics:

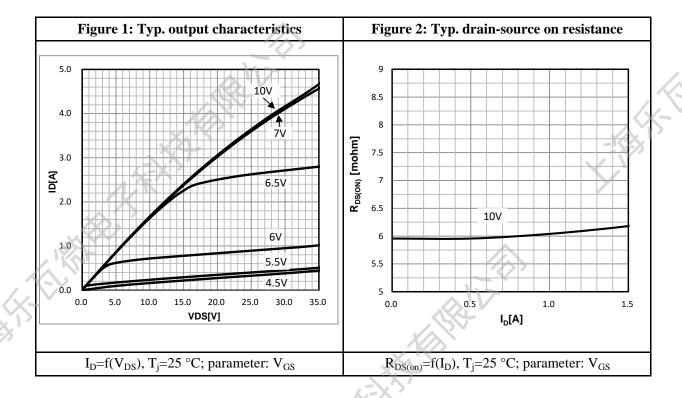
Symbol	Parameter	Value	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	0.89	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	50	°C/W

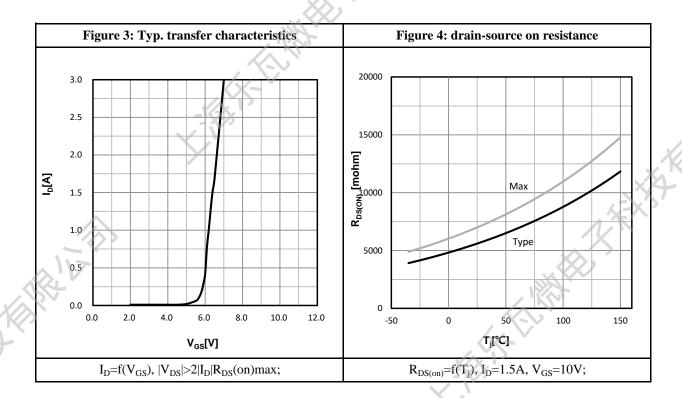
Electrical Characteristic ($T_C = 25$ °C, unless otherwise specified):

Static Ch	aracteristics						
Cumbal	Parameter	Test Conditions		Value		Unita	
Symbol	Parameter	Test Collutions	Min.	Typ.	Max.	Units	
V_{DSS}	Drain to Source Breakdown Voltage	GS / D I	1500		-	V	
I_{DSS}	Drain to Source Leakage	V_{DS} =1500V, V_{GS} =0V, T_A =25°C	1	1	25	4	
¹ DSS	Current	V_{DS} =1200V, V_{GS} =0V, T_A =125°C	-	-	500	μΑ	
$I_{GSS(F)}$	Gate to Source Forward Leakage	V_{GS} =+20V, V_{DS} =0V			100	nA	
$I_{GSS(R)}$	Gate to Source Reverse Leakage	V_{GS} =-20V, V_{DS} =0V			-100	nA	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0	4.0	5.0	V	
R _{DS(ON)}	Drain-to-Source On-Resistance	$V_{GS} = 10V, I_D = 1.5A$		5.6	7.0	Ω	
Pulse width tp≤380μs,δ≤2%							

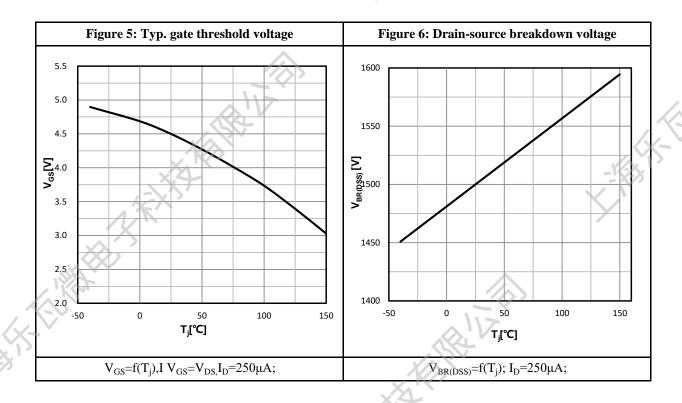
<u> </u>				<u> </u>		
Dynamic	Characteristics		. 1	17		
Symbol	Parameter	Test Conditions	N.	Value		Units
Symbol	rarameter	Test Conditions	Min.	Тур.	Max.	
C _{iss}	Input Capacitance	$V_{GS} = 0V$	(?	1106		
Coss	Output Capacitance	$V_{GS} = 0V$ $V_{DS} = 25V$		84		pF
C_{rss}	Reverse Transfer Capacitance	f = 1.0MHz		8.3	-	
R_G	Gate input resistance	V _{GS} =0V,V _{DS} Short		2.5		Ω

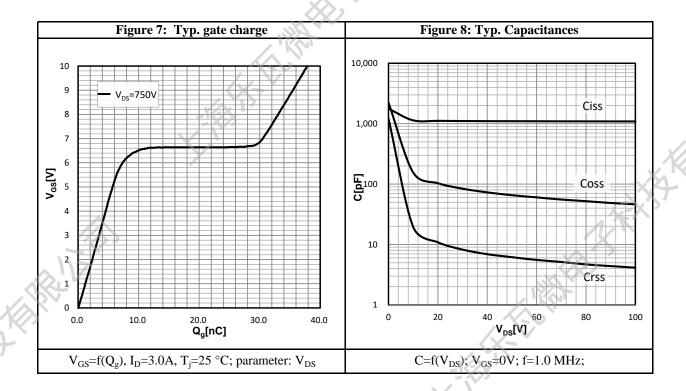
Resistive	Switching Characteristics					
Symbol	Parameter	Test Conditions		Value		Units
Symbol	Farameter	Test Collutions	Min.	Typ.	Max.	Units
$t_{d(ON)}$	Turn-On Delay Time	$I_{\rm D} = 3.0 {\rm A}$		25		
t _r	Rise Time	$V_{DS} = 750V$		48		ne
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{GS} = 10V$		57		ns
$t_{\rm f}$	Fall Time	$R_G = 4.7\Omega$		52		1
Q_{g}	Total Gate Charge	$V_{GS} = 10V$		37.9		
Q_{gs}	Gate Source Charge	$V_{DS} = 750V$		8.7		пC
Q_{gd}	Gate Drain ("Miller") Charge	$I_{\rm D} = 3.0 A$		21		KEX.

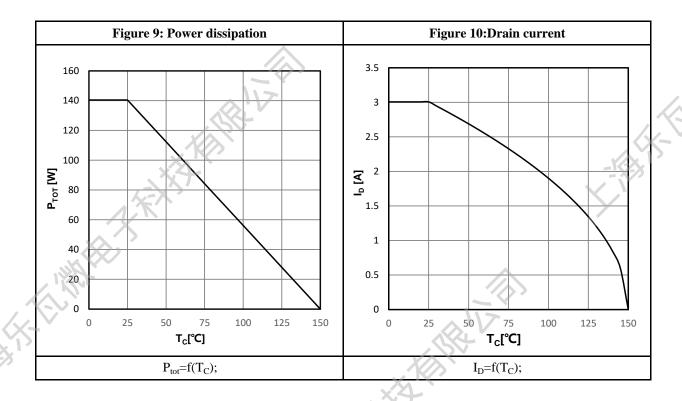

Source-D	rain Diode Characteristics				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	^
Compleal	Dogomotog	Test Conditions		Value	.u(XX)	I Inita
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
I_{S}	Diode Forward Current	$T_C = 25 ^{\circ}C$		-	3.0	A
V_{SD}	Diode Forward Voltage	$I_{S}=3.0A, V_{GS}=0V$		/v-V	1.4	V
t _{rr}	Reverse Recovery time	I _S =3.0A, T _j =25°C	//	750		ns
Q_{rr}	Reverse Recovery Charge	dI/dt=100A/μs,VGS=0V		6.3		uС

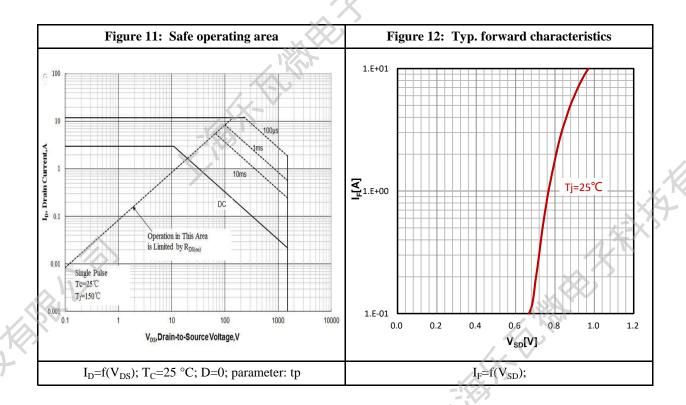

a1: Repetitive rating; pulse width limited by maximum junction temperature

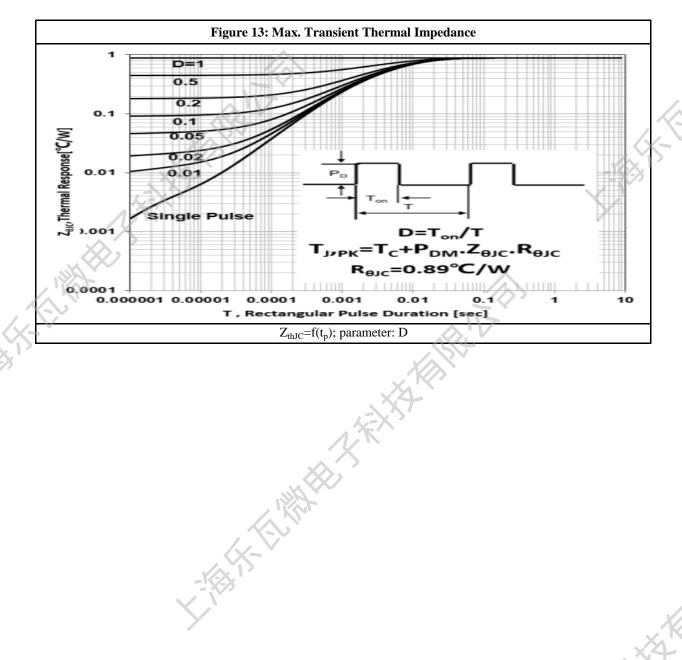
a2: V_{DD} =100V,L=10.0mH, R_G =25 Ω , Starting T_J =25 °C




Characteristics Curve:







A XXX KANGELIA

Test Circuit & Waveform:



Figure 14: Gate Charge Test Circuit & Waveform

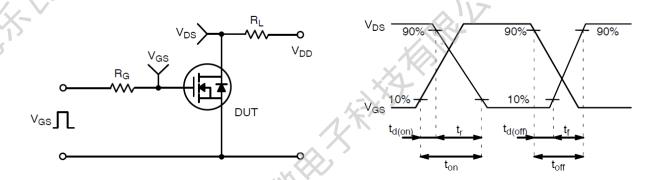
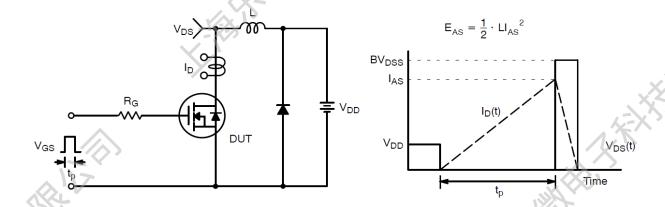
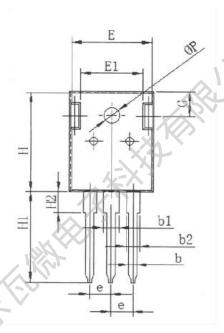
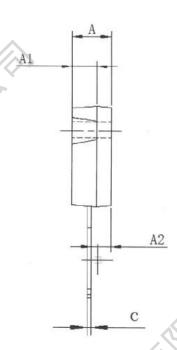
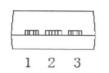


Figure 15: Resistive Switching Test Circuit & Waveforms

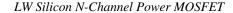

Figure 16: Unclamped Inductive Switching Test Circuit & Waveforms

Package Outline:

b1 b2 b	c	A2		
		基本月	7寸	1
	SYMBOL		单位:mm	
		MIN	NOM	MAX
1/2/17	А	4.8	5	5.2
- X-2	A1	3.3	3.5	3.7
X,'	A2	2.2	2.4	2.6
Y	b	1	1.2	1.4
	b1	2.9	3.1	3.3
	b2	1.9	2.1	2.3
	С	0.5 5.25	0.6 5.45	0.7 5.65
	e E	15.2	15.7	16.2
	E1	10.2	10.7	11.2
	Н	20.8	21	21.2
	H1	19.5	20	20.5
	H2	4	4.2	4.4
	G	5.6	5.8	6
	θр	3.3	3.5	3.7

A NAME OF THE PARTY OF THE PART

LW03N150BK



Revision History:

	Revison Date			Descriptions	
F	Rev 1.0	Nov.2023	Initial Version		
_					
			117		1
			~		(X-V
		XX.			-1(-)
		L=XXT			Y-17'
	1	**			Y
, <				117	
/X-	~				
,1				XX	
,				X	
			4	EX	

A NATIONAL DESIGNATION OF THE PARTY OF THE P

Disclaimer:

The information in this document is believed to be accurate and reliable. However, no responsibility is assumed by LW-Micro for its use. All operating parameters must be designed, validated and tested to ensure they meet the requirements of your application. LW-Micro reserves the right to make any specification and/or circuitry changes without prior notification. Before starting a brand-new project, please contact LW-Micro Sales to get the most recent relevant information.

Mailing Address: Room 301, Building 2, No.1690 CaiLun Road, China (Shanghai) Pilot Free Trade Zone Shanghai Lewa Micro-electronics Technology Co., Ltd