

General Description

The GS75232TSS combines three drivers and five receivers. The pinout matches the flow-through design of the SN75C185 to decrease the part count, reduce the board space required, and allow easy interconnection of the UART and serial-port connector of an IBMTMPC/AT and compatibles. The bipolar circuits and processing of the

GS75232TSS provides a rugged, low-cost solution for this function at the expense of quiescent power and external passive components relative to the SN75C185.

The GS75232TSS complies with the requirements of the TIA/EIA-232-F and ITU (formerly CCITT) V.28 standards. These standards are for data interchange between a host computer and a peripheral at signaling rates up to 20 kbit/s. The switching speeds of these devices are fast enough to support rates up to 120 kbit/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be expected unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates up to 120 kbit/s, use of TIA/EIA-423-B (ITU V.10) and TIA/EIA-422-B (ITU V.11) standards is recommended.

The GS75232TSS is available in TSSOP20 package.

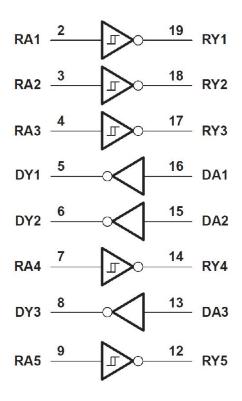
Features

- Single chip with easy interface between UART and serial-port connector of IBMTM PC/AT and compatibles
- Meet or exceed the requirements of TIA/EIA-232-F and ITU v.28 standards
- Designed to support data rates up to 120kbit/s
- Pinout compatible with SN75C185 and SN75185

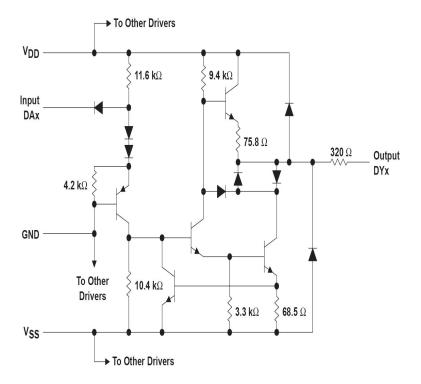
Package Information

Part NO.	Package	Package	Package	
	Description	Marking	Option	
GS75232TSS	TSSOP20	GS75232TSS XXXXX	70/Tube	

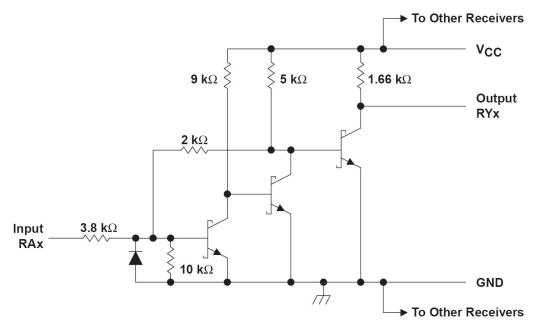
GS75232TSS:Part NO. XXXXX:Lot NO.


GS75232TSS

Applications


Serial Communication

Functional Block Diagram


Logic Diagram (Positive Logic)

Schematic (Each Driver)

Schematic (Each Receiver)

Resistor Values Shown are Nominal.

Shaoxing Silicore Technology Co.,Ltd. www. silicore. com. cn

CHMC

Pin Configuration

	6		
V _{DD} [U ₂₀] v _{cc}
RA1	2	19	RY1
RA2	3	18	RY2
RA3	4	17	RY3
DY1	5	16	DA1
DY2	6	15	DA2
RA4	7	14	RY4
DY3	8	13	DA3
RA5 [9	12	RY5
V _{SS} [10	11] GND
			•

GS75232TSS (TSS0P20)

Pin Description

Pin Number	Pin Name	Function Description	Pin Number	Pin Name	Function Description
1	V_{DD}	Positive Supply Voltage	11	GND	Ground
2	RA1	Receiver A1 Input	12	RY5	Receiver Y5 Output
3	RA2	Receiver A2 Input	13	DA3	Driver A3 Input
4	RA3	Receiver A3 Input	14	RY4	Receiver Y4 Output
5	DY1	Driver Y1 Output	15	DA2	Driver A2 Input
6	DY2	Driver Y2 Output	16	DA1	Driver A1 Input
7	RA4	Receiver A4 Input	17	RY3	Receiver Y3 Output
8	DY3	Driver Y3 Output	18	RY2	Receiver Y2 Output
9	RA5	Receiver A5 Input	19	RY1	Receiver Y1 Output
10	V _{SS}	Negative Supply voltage	20	V _{CC}	Supply voltage

Absolute Maximum Ratings (Tamb=25°C)

Parameter Na	Parameter Name		Value	Unit
		Vcc	10	
Supply Voltage (Note 1)		V _{DD}	15	V
		V _{SS}	-15	
	Driver		-15 ~ +7	N/
Input Voltage Range	Receiver		-30 ~ +30	V
Driver Output Voltage Range	·	Vo	-15 ~ +15	V
Receiver Low-level Output Co	urrent	IoL	20	mA
Package Thermal Impedance (Note 2 and 3)	TSSOP20		83	
Operating Virtual Junction Ter	mperature	TJ	150	°C
Storage Temperature Range		Tstg	-65 ~ +150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Note: 1. All voltages are with respect to the network ground terminal.

Note: 2. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

Note: 3. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

Parameter Name		Symbol	Min	Тур	Max	Unit
		V _{DD}	7.5	9	15	
Supply Voltage (Note 4)		Vss	-7.5	-9	-15	l v
		V _{CC}		5	5.5	
High-Level Input Voltage (driver only)		V _{IH}				V
Low-Level Input Voltage (driver only)		V _{IH}			0.8	V
Iliah I and Ontant Comment	т	Driver			-6	
High-Level Output Current	Іон	Receiver			-0.5	mA
Level Octored Comment	т	Driver			6	
Low-Level Output Current	I _{OL}	Receiver			16	mA
Operating Free-Air Temperature		T _A			70	°C

Note4: When powering up the GS75232TSS, the following sequence should be used: 1. VSS 2. VDD 3. VCC 4. I/Os

Applying VCC before VDD may allow large currents to flow, causing damage to the device. When powering down the GS75232TSS,

the reverse sequence should be used.

Shaoxing Silicore Technology Co.,Ltd. www. silicore. com. cn

Parameter Name	Symbol	Test	t Conditions	Min	Тур	Max	Unit
		All Inputs at	$V_{DD}=9V, V_{SS}=-9V$			15	
		1.9V,	$V_{DD}=12V, V_{SS}=-12V$			19	
Supply Current	Inn	No Load	V _{DD} =15V, V _{SS} =-15V			25	mA
from V _{DD}	I _{DD}	All Inputs at	$V_{DD}=9V, V_{SS}=-9V$			4.5	mA
		0.8V,	$V_{DD}=12V, V_{SS}=-12V$			5.5	
		No Load	$V_{DD}=15V, V_{SS}=-15V$			9	
		All Inputs at	$V_{DD}=9V, V_{SS}=-9V$			-15	
		1.9V, No Load	$V_{DD}=12V, V_{SS}=-12V$			-19	
Supply Current	т		$V_{DD}=15V, V_{SS}=-15V$			-25	
from V _{SS}	Iss	All Inputs at	$V_{DD}=9V, V_{SS}=-9V$			-3.2	mA
		0.8V,	$V_{DD}=12V, V_{SS}=-12V$			-3.2	
		No Load	V _{DD} =15V,V _{SS} =-15V			-3.2	
Supply Current from V _{CC}	I _{CC}	All Inputs at :	5V, No Load, Vcc=5V			30	mA

Supply Currents Over Recommended Operating Free-air Temperature Range

Driver Section

Electrical Characteristics Over Recommended Operating Free-air Temperature Range

Parameter Name	Symbol	Test Conditions	Min	Тур	Max	Unit
High-level Output Voltage	Voh	$V_{IL}=0.8V, R_L=3k,$ (See Figure 1)	6.0	7.5		V
Low-level Output Voltage (See Note 5)	V _{OL}	V_{IH} =1.9V, R_L =3k, (See Figure 1)		-7.5	-6.0	V
High-level Input Current	I _{IH}	V _I =5V, (See Figure 2)			10.0	μΑ
Low-level Input Current	I _{IL}	V _I =0V, (See Figure 2)			-1.6	mA
High-level Short-Circuit Output Current (See Note 6)	I _{OS(H)}	$V_{IL}=0.8V, V_O=0,$ (See Figure 1)	-4.5	-12.0	-19.5	mA
Low-level Short-Circuit Output Current	I _{OS(L)}	V _{IH} =2V,V ₀ =0, (See Figure 1)	4.5	12.0	19.5	mA
Output Resistance (See Note 7)	R ₀	$V_{CC}=V_{DD}=V_{SS}=0,$ $V_{O}=-2V$ to 2V	300			Ω

(V_{DD}=9V,V_{SS}=-9V,V_{CC}=5V, Unless otherwise noted)

Note 5. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet

for logic levels only (e.g, if-10V is maximum, the typical value is a more negative voltage).

Note 6. Output short-circuit conditions must maintain the total power dissipation below absolute maximum ratings.

Note 7. Test conditions are those specified by TIA/EIA-232-F and as listed above.

Switching Characteristics

 $(V_{DD}=12V, V_{SS}=-12V, V_{CC}=5V, Ta=25$ °C, Unless otherwise noted)

Parameter Name	Symbol	Test	Conditions	Min	Тур	Max	Unit
Propagation Delay Time, Low to High-level Output	t _{PLH}	$R_L=3K\Omega$ to $7K\Omega, C_L=15pF$ (See Figure 3)			315	500	ns
Propagation Delay Time, High to Low-level Output	t _{PHL}	$R_L=3K\Omega$ to $7K\Omega$, $C_L=15pF$ (See Figure 3)			75	175	ns
Transition Time, Low to High-level Output	t _{TLH}	$R_L=3K\Omega$ to 7KΩ	C _L =15pF (See Figure 3)		60	100	ns
			C _L =2500pF (See Figure 3) (Note 8)		1.7	2.5	μs
Transition Time	t _{THL}	$\begin{array}{c} R_L=3K\Omega\\ to \ 7K\Omega \end{array}$	C _L =15pF (See Figure 3)		40	75	ns
Transition Time, High to Low-level Output			C _L =2500pF (See Figure 3) (Note 8)		1.5	2.5	μs

Note 8. Measured between \pm 3-V and \pm 3-V points of the output waveform (TIA/EIA-232-F conditions); all unused inputs are tied

either high or low.

Receiver Section

Electrical Characteristics Over Recommended Operating Conditions

(ALL Typical	Values are at	$V_{DD}=9V, V_{SS}=-9$	9V,V _{CC} =5V, 7	T _A =25℃,	Unless other	wise noted)
--------------	---------------	------------------------	---------------------------	----------------------	--------------	-------------

Parameter Name	Symbol	Test Co	nditions	Min	Тур	Max	Unit
Positive-going Input		$T_A=25^{\circ}C$, (See Figure 5) $T_A=0^{\circ}C$ to $70^{\circ}C$, (See Figure 5)		1.75	1.9	2.3	
Threshold Voltage	V_{IT^+}			1.55		2.3	V
Negative-going Input Threshold	V _{IT-}			0.75	0.97	1.25	V
Input Hysteresis Voltage (V _{IT+} – V _{IT-})	Vhys			0.5			V
II al. I and Outward Walters	V_{OH}	I _{OH} =-0.5mA	V _{IH} =0.75V	2.6	4	5	v
High-level Output Voltage			Inputs Open	2.6			v
Low-level Output Voltage	VOL	I _{OL} =10mA,V _I =	=3V		0.2	0.45	V
IIi-h lossel langet Comment	т	V _I =25V, (See]	Figure 5)	3.6		8.3	
High-level Input Current	I _{IH}	V _I =3V, (See Figure 5)		0.43			mA
	т	V _I =-25V, (Se	e Figure 5)	-3.6		-8.3	
Low-level Input Current	I_{IL}	$V_I = -3V$, (See	V _I =-3V, (See Figure 5)				mA
Short-circuit OutputCurrent	Ios	(See Figure 4)			-3.4	-12	mA

Shaoxing Silicore Technology Co.,Ltd. www. silicore. com. cn

Switching Characteristics

(V_{DD}=12V,V_{SS}=-12V,V_{CC}=5V,Ta=25°C,unless otherwise noted)

Parameter Name	Symbol	Test Conditions	Min	Тур	Max	Unit
Propagation Delay Time, Low to High-level Output	t _{PLH}			107	250	ns
Propagation Delay Time, High to Low-level Output	t _{PHL}	C _L =50pF,R _L =5 k (See Figure 6)		42	150	ns
Transition Time, Low to High-level Output	t _{TLH}			175	350	ns
Transition Time, High to Low-level Output	t _{THL}			16	60	ns
Propagation Delay Time, Low to High-level Output	t _{PLH}			100	160	ns
Propagation Delay Time, High to Low-level Output	t _{PHL}	C _L =15pF, R _L =1.5k		60	100	ns
Transition Time, Low to High-level Output	t _{TLH}	(See Figure 6)		90	175	ns
Transition Time, High to Low-level Output	t _{THL}			15	50	ns

Parameter Measurement Information

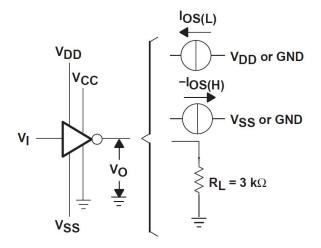
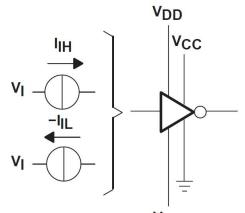
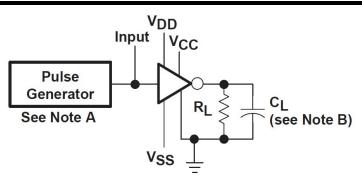




Fig.1 Driver Test Circuit for VOH, VOL, IOS(H) and IOS(L)

 $$V_{SS}$$ Fig.2 Driver Test Circuit for $I_{\rm IH}$ and $I_{\rm IL}$

GS75232TSS

Note: A. The pulse generator has the following characteristics: $t_W=25\mu s$, PRR=20kHz, $Z_O=50\Omega$, $t_T=t_f<50ns$ Note B. C_L includes probe and jig capacitance.

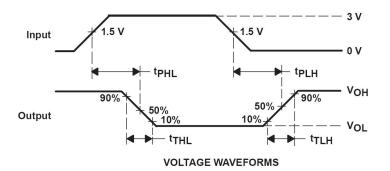


Fig.3 Driver Test Circuit and Voltage Waveforms

Parameter Measurement Information

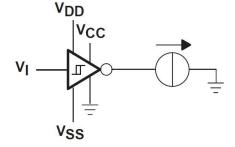


Fig.4 Receiver Test Circuit for Ios

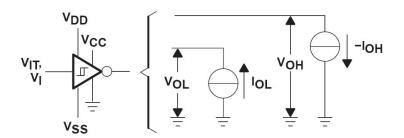
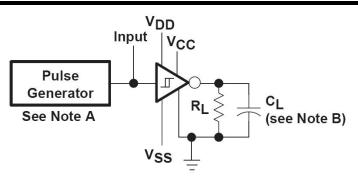



Fig.5 Receiver Test Circuit for $V_{\text{IT}}, V_{\text{OH}}$ and V_{OL}

GS75232TSS

Note: A. The pulse generator has the following characteristics: $t_W=25\mu s$, PRR=20kHz, $Z_O=50\Omega$, tr=t_f<50ns Note B. C_L includes probe and jig capacitance.

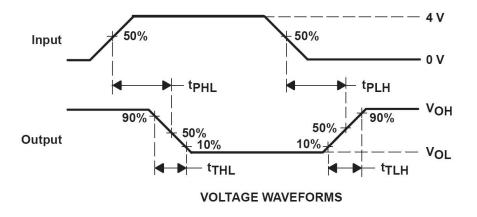
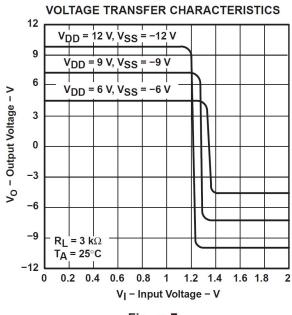
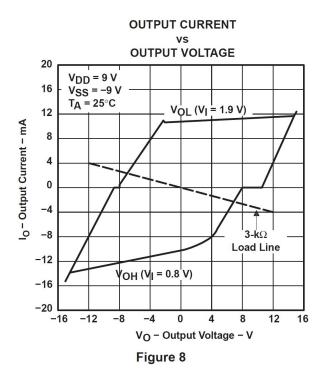
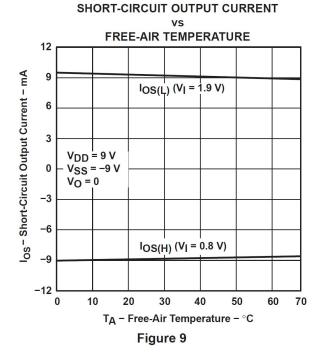
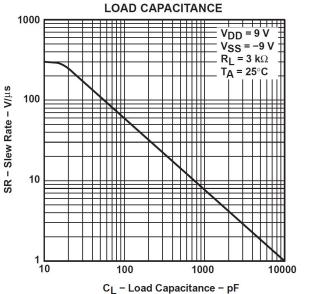
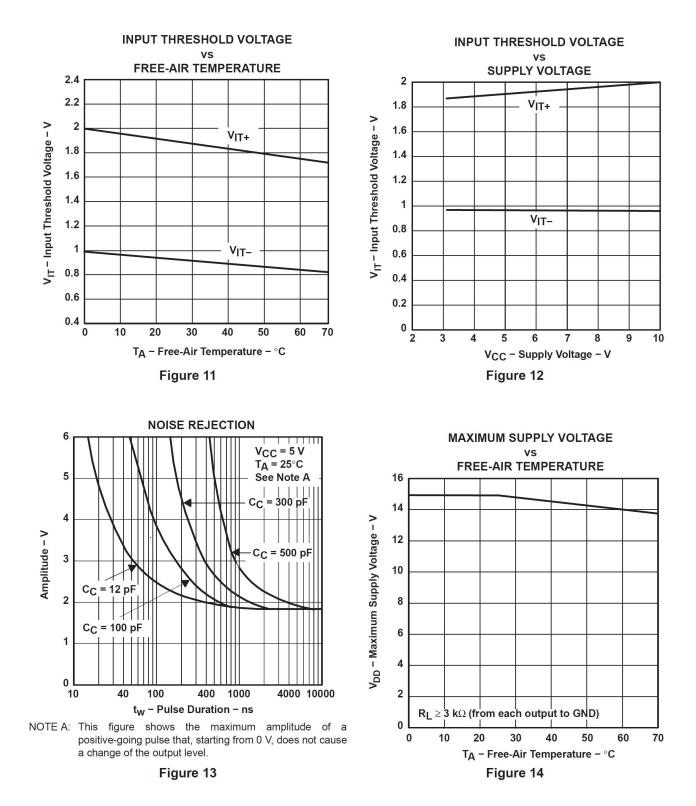




Fig 6. Receiver Propagation and Transition Times


Typical Characteristics Driver Section





Shaoxing Silicore Technology Co.,Ltd. www. silicore. com. cn

CHMC

Typical Characteristics Driver Section(Cont.)

Shaoxing Silicore Technology Co.,Ltd. www. silicore. com. cn

CHMC

Application Information

Diodes placed in series with the V_{DD} and V_{SS} leads protect the GS75232TSS in the fault condition in which the device outputs are shorted to ± 15 V and the power supplies are at low and provide low-impedance paths to ground

(see Figure 15).

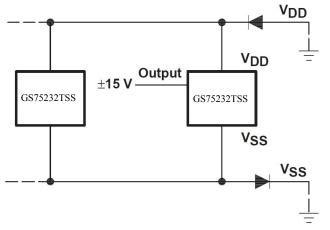


Fig.15 Power-Supply Protection to Meet Power-Off Fault Conditions of TIA/EIA-232-F

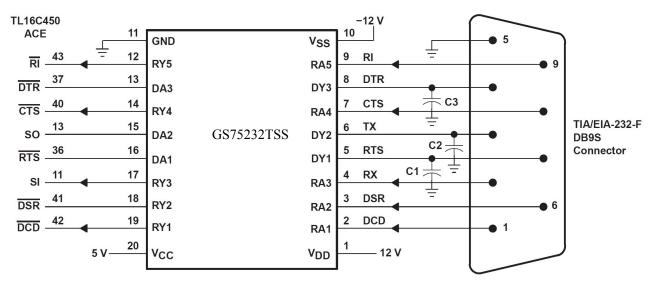
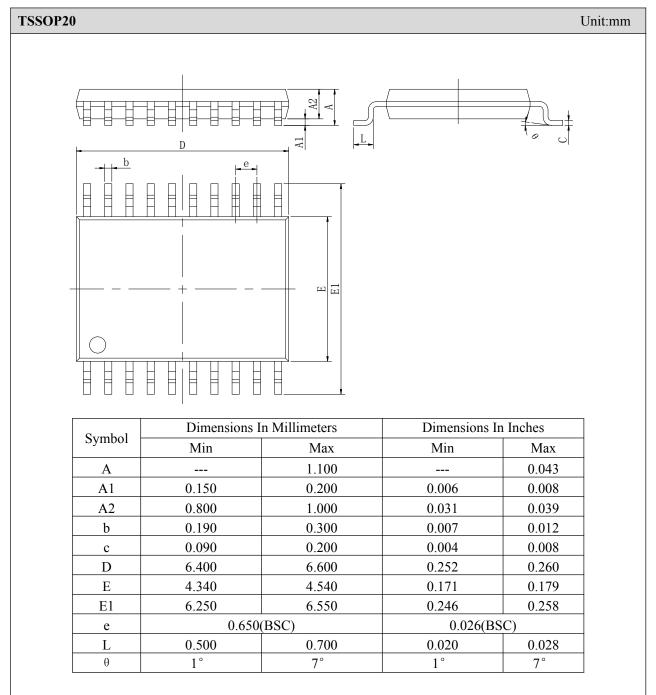



Fig.16 Typical Connection

Outline Dimensions

Statements

- Silicore Technology reserves the right to make changes without further notice to any products or specifications herein. Before customers place an order, customers need to confirm whether datasheet obtained is the latest version, and to verify the integrity of the relevant information.
- Failure or malfunction of any semiconductor products may occur under particular conditions, customers shall have obligation to comply with safety standards when customers use Silicore Technology products to do their system design and machine manufacturing, and take corresponding safety measures in order to avoid potential risk of failure that may cause personal injury or property damage.
- The product upgrades without end, Silicore Technology will wholeheartedly provide customers integrated circuits that have better performance and better quality.