

-100V P-Channel Enhancement Mode MOSFET

30P10

Description

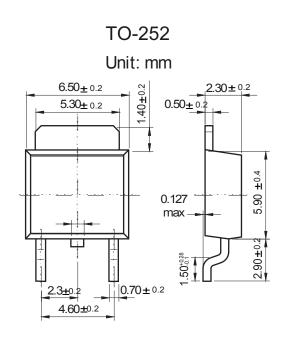
The 30P10uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = -100V I_D =-30A

R_{DS(ON)} <95mΩ @ V_{GS}=10V

Application


Brushless motor

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
30P10	TO-252-3L	30P10 YYYY	2500

Dimensions in inches and (millimeters)

Absolute Maximum Ratings (Tc=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	-100	V
Vgs	Gate-Source Voltage	±20	V
I₀@Tc=25°C	Continuous Drain Current, V _{GS} @ -10V ¹	-30	А
I₀@Tc=100°C	Continuous Drain Current, V _{GS} @ -10V ¹	-18	A
Ідм	Pulsed Drain Current ²	-90	A
EAS	Single Pulse Avalanche Energy ³	157.2	mJ
las	Avalanche Current	-19	A
P₀@Tc=25°C	Total Power Dissipation ⁴	280	W
Тятд	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
R _θ JA	Thermal Resistance Junction-Ambient ¹	62.5	°C/W
R _θ JC	Thermal Resistance Junction-Case ¹	2.3	°C/W

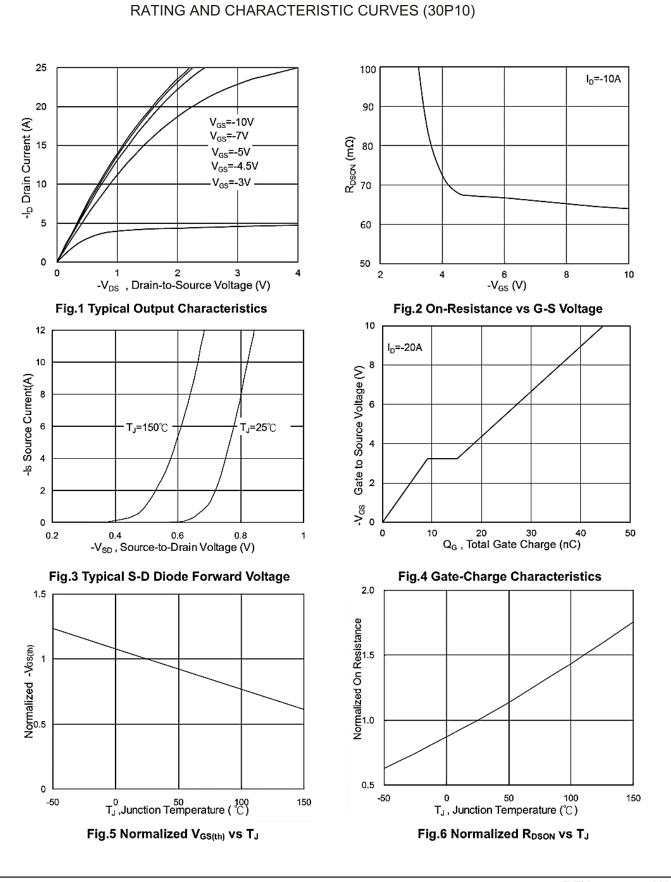
www.gk-goodwork.com.

30P10

P-Channel Electrical Characteristics (TJ =25 $^{\circ}$ C, unless otherwise noted)

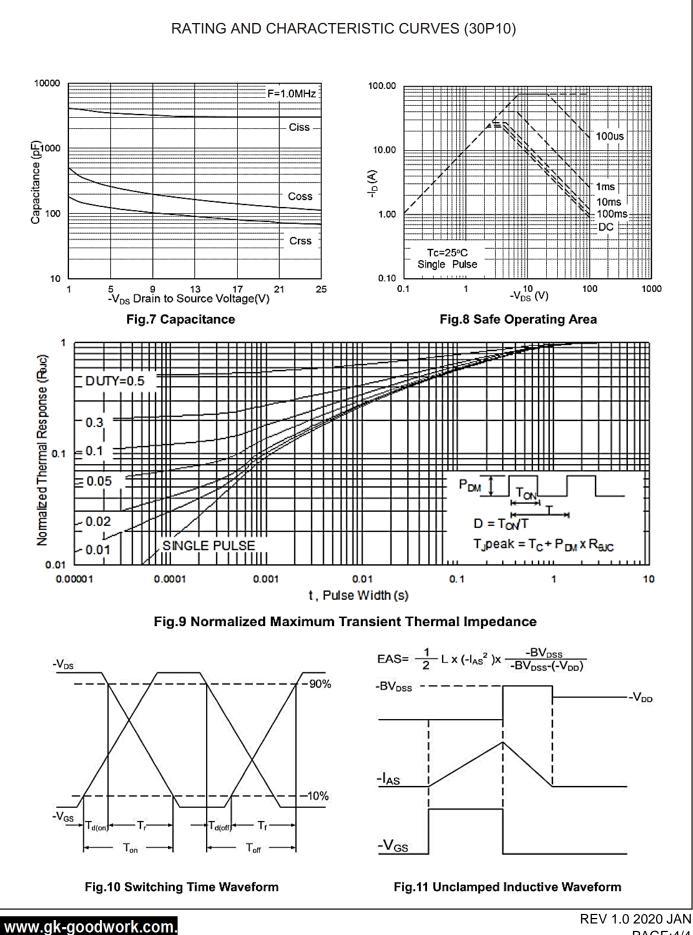
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I _D =-250uA	-100			V
5	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-10A		80	95	mΩ
Rds(ON)		$V_{\text{GS}}\text{=-4.5V}$, $I_{\text{D}}\text{=-8A}$		90	115	
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =-250 uA	-1.2	-1.7	-2.5	V
IDSS	Drain-Source Leakage Current	V_{DS} =-100V , V_{GS} =0V , T_J =25°C			-50	uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-10V , I _D =-10A		24		S
Qg	Total Gate Charge			44.5		nC
Q_{gs}	Gate-Source Charge	$V_{\text{DS}}\text{=-}50\text{V}$, $V_{\text{GS}}\text{=-}10\text{V}$, $I_{\text{D}}\text{=-}20\text{A}$		9.13		
Q_{gd}	Gate-Drain Charge			5.93		
T _{d(on)}	Turn-On Delay Time	V _{DD} =-50V , V _{GS} =-10V , R _G =3.3 ,		12		ns
Tr	Rise Time			27.4		
T _{d(off)}	Turn-Off Delay Time	I _D =-10A		79		
Tf	Fall Time			53.6		
Ciss	Input Capacitance			3029		
Coss	Output Capacitance	V _{DS} =-20V , V _{GS} =0V , f=1MHz		129		pF
Crss	Reverse Transfer Capacitance			76		
IS	Continuous Source Current ^{1,5}	$V_G=V_D=0V$, Force Current			-30	А
Vsd	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V
trr	Reverse Recovery Time	IF=-8A , di/dt=-100A/µs ,		38.7		nS
Qrr	Reverse Recovery Charge	TJ=25℃		22.4		nC

Note :


 1_{\times} The data tested by surface mounted on a 1 inch 2 $\,$ FR-4 board with 2OZ copper.

2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3、The EAS data shows Max. rating . The test condition is V DD =-72V,VGS =-10V,L=0.1mH,IAS =-19A


 $4\,{\ensuremath{\scriptstyle \sim}}$ The power dissipation is limited by $150\,{\ensuremath{\scriptstyle \odot}}$ C junction temperature

5. The data is theoretically the same as I D and I DM , in real applications , should be limited by total power dissipation.

www.gk-goodwork.com.

REV 1.0 2020 JAN PAGE:3/4

PAGE:4/4