

LI-ION/POLYMER 2-CELL PROTECTOR

GENERAL DESCRIPTION

XBM3211 Series is a protection IC for 2 serial-cell lithium-ion / lithium polymer rechargeable batteries and includes high accuracy voltage detection circuits and delay circuits. XBM3211 Series is suitable for protecting 2 serial-cell rechargeable lithium-ion / lithium polymer battery packs from over-charge, over-discharge, over-current and short-circuiting.

FEATURES

- Manufactured with High Voltage Tolerant Process Maximum Rating 28V
- Low supply current
- Cell voltage 3.6V, Typ. 5µA(Iq)

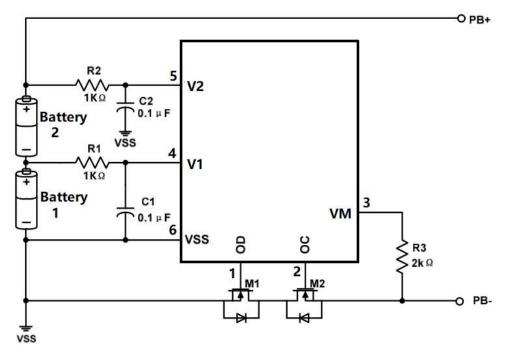
Cell voltage 2.0V, Max. 1µA(Isd)

• SOT23-6 Package

 Variety of detector threshold 	
Over-charge detector threshold-Vcu:3.7V-4.5V step of 0.1V	+/-25mV
Overcharge Release Voltage-VcL=Vcu-0.2V	+/-50mV
Over-discharge detector threshold VDL:2.4V-3.0V step of 0.1V	+/-80mV
Over-discharge Release Voltage- VDR	+/-100mV
Discharge-current threshold1 0.2V	
Short detector threshold 1 5V (Fixed)	

Short detector threshold 1.5V (Fixed)

Charge-current threshold -0.2V


• Setting of Output delay time Over-charge detector Output Delay 700ms Over-discharge detector Output Delay 100ms Discharge-current detector Output Delay 9ms Charge-current detector Output Delay 9ms Short Circuit detector Output Delay 100µs

- 0V Battery Charging Function
- ESD HBM >4000V
- RoHS Compliant and Lead Pb Free

APPLICATIONS

Power Tools E-Bike Power Bank Power Amplyfier 2 Cell Lithium-ion or Lithium polymer rechargeable battery pack

ORDERING INFORMATION

PART NUMBER	Overcharge Detection Voltage [Vcu]	Overcharge Release Voltage [VcL]	Overdischarge Detection Voltage [VDL]	Overdischarge Release Voltage [VDR] *	Top Mark (Note)
XBM3211DBA	4.28±0.025V	4.08±0.05V	2.9±0.08V	3.0±0.1V	
XBM3211DGB	4.28±0.025V	4.08±0.05V	2.4±0.08V	2.95±0.1	
XBM3211HGI	4.38±0.025V	4.18±0.05V	2.4±0.08V	2.6±0.1V	3211 XXXYW
XBM3211DCA	4.28±0.025V	4.08±0.05V	2.8±0.08V	3.0±0.1V	
XBM3211BCA	4.25±0.025V	4.05±0.05∨	2.8±0.08V	3.0±0.1V	

Note : "YW" is manufacture date code, "Y" means the year, "W" means the week

XXX: Part number suffix, such as DBA、DGB and so on

* : Enter Sleep Mode after overdischarge, needs charging to activate normal discharge state

PIN CONFIGURATION

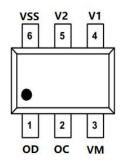


Figure 2. SOT23-6 (TOP VIEW)

PIN DESCRIPTION

XBM3211 SERIES PIN NUMBER	PIN NAME	PIN DESCRIPTION		
1	OD	Connection pin of discharge control FET gate (CMOS output)		
2	00	Connection pin of charge control FET gate (CMOS output)		
3	VM	Voltage detection pin between VM pin and VSS pin (Overcurrent / charger detection pin)		
4	V1	Positive terminal Pin for Cell-1 & negative terminal Pin for Cell-2		
5	V2	Positive terminal Pin for Cell-2,VDD pin for the IC		
6	VSS	Ground, negative input Pin , negative terminal Pin for Cell-1		

ABSOLUTE MAXIMUM RATINGS

(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

PARAMETER	VALUE	UNIT
V2; VM	-0.3~30	V
OC	VSS-0.3~VSS+30	V
OD	VSS+0.3~VDD+0.3	V
Operating Ambient Temperature	-40 to 85	°C
Maximum Junction Temperature	125	°C
Storage Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C
Power Dissipation at T=25°C	0.25	W
Package Thermal Resistance (Junction to Ambient) θJA	350	°C/W
Package Thermal Resistance (Junction to Case) θια	50	°C/W
ESD(HBM)	4000	V

ELECTRICAL CHARACTERISTICS

Typicals and limits appearing in normal type apply for $T_A = 25^{\circ}C$, unless otherwise specified

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Detection Voltage						
Overcharge Detection Voltage	V _{CU}		V _{CU} -25mV	V _{CU}	V _{CU} +25mV	V
Overcharge Release Voltage	V _{CL}		V _{CL} -50mV	V _{CL}	V _{CL} +50mV	V
Overdischarge Detection Voltage	V _{DL}		V _{DL} -80mV	V _{DL}	V _{DL} +80mV	V
Overdischarge Release Voltage	V_{DR}		V _{DR} -100mV	V _{DR}	V _{DR} +100mV	V
Charger Detection Voltage	V _{CHA}		-0.17	-0.2	-0.23	V
Discharger Detection Voltage	V _{DIS}		0.17	0.2	0.23	V
Current Consumption						
Current Consumption in Normal Operation	I _{OPE}	V _{DD} =7.2V VM =0V		5	12	uA
Current Consumption in power Down	I _{PDN}	V _{DD} =4V VM pin floating		0.1	1	uA
Detection Delay Time						
Overcharge Voltage Detection Delay Time	t _{CU}		500	700	900	mS
Overdischarge Voltage Detection Delay Time	t _{DL}		60	100	140	mS
Overdischarge Current Detection Delay Time	t _{IOV}		6	10	14	mS
Overcharge Current Detection Delay Time	t _{ICV}		6	10	14	mS
Load Short-Circuiting Detection Delay Time	t _{SHORT}		50	100	200	uS

Suzhou XySemi Electronic Technology Co., Limited.

- 4 -

BLOCK DIAGRAMS

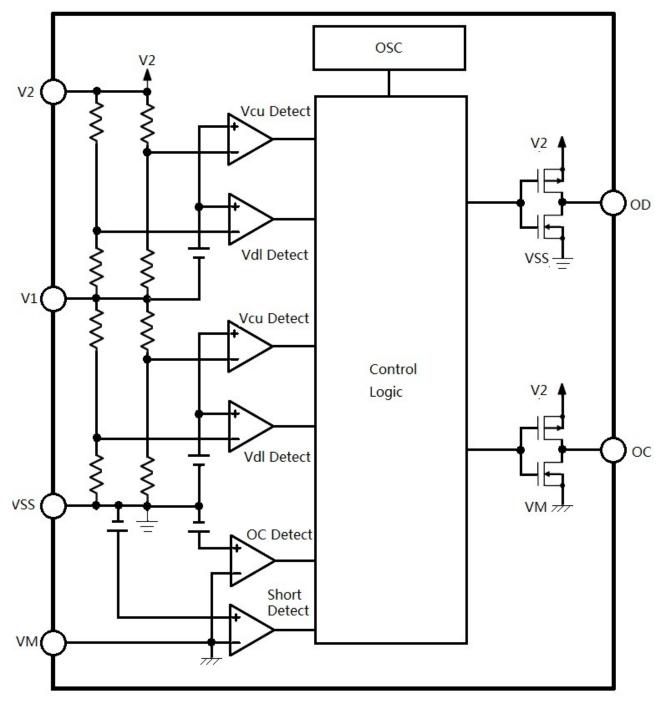


Figure 3. Functional Block Diagram

OPERATION

Over-Charge Detectors

While the cell is charged, the voltage between V1 pin and VSS pin (voltage of the Cell-1), the voltage between V2 pin and V1 pin (voltage of the Cell-2) are supervised. If at least one of the cells' voltage becomes equal or more than the over-charge detector threshold, the over-charge is detected, and an external charge control N-MOSFET turns off with OC pin being at "L" level via an external pull-down resister and charge stops.

To reset the over-charge and make the OC pin level to "H" again after detecting over-charge, in such conditions that a time when all the cells' voltages are down to a level lower than overcharge released voltage. The output voltage of OC pin becomes "H", and it makes an external N-MOSFET turns on, and charge cycle is available. The over-charge detectors have hysteresis. Internal fixed output delay times for over-charge detection and release from overcharge exist. Even if one of voltage of Cells keeps its level more than the over-charge detector threshold, and output delay time passes, over-charge voltage is detected. Even when the voltage of each cell becomes equal or higher level than V_{CU} if these voltages would be back to a level lower than the over-charge detector threshold within a time period of the output delay time, the over-charge detector released voltage, even if just one of cells' voltage becomes equal or more than the over-charge released voltage within the released output delay time, over-charge is not released.

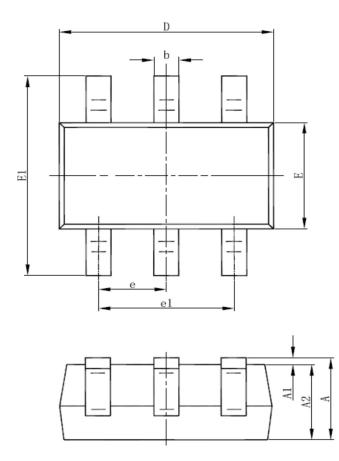
Over-Discharge Detectors

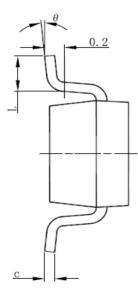
While the cells are discharged, the voltage between V1 pin and VSS pin (the voltage of Cell-1), the voltage between V2 pin and V1 pin (Cell-2 voltage) are supervised. If at least one of the cells' voltage becomes equal or less than the over-discharge detector threshold, the overdischarge is detected and discharge stops by the external discharge control N-MOSFET turning off with the OD pin being at "L". The condition to release over-discharge voltage detector is that after detecting over-discharge voltage, all the cells' voltage becomes higher than the over-discharge released voltage, OD pin becomes "H"level, and by turning on the external N-MOSFET, discharge becomes possible. The over-discharge detectors have hysteresis.

Internal fixed output delay times for over-charge detection and release from over-charge exist. If at least one of the voltage of Cells is down to equal or lower than the over-discharge detector threshold, if the voltage of each Cell would be back to a level higher than the overdischarge detector threshold within a time period of the output delay time, the over-discharge is not detected. Output delay time for release from over-discharge is also set internally. After detecting over-discharge, supply current would be reduced and be into standby by halting unnecessary circuits and consumption current of the IC itself is made as small as possible.

Discharge-current Detector, & Short Circuit Protector

When the discharge is acceptable, VM voltage is supervised, if the load is short and VM voltage becomes equal or more than excess discharge current threshold, and equal or less than short detector threshold, the status becomes excess discharge current detected condition. If VM voltage becomes equal or more than short circuit detector threshold, the status becomes short circuit detected, then OD pin outputs "L" and by turning off the external MOSFET, large current flow is prevented. The excess discharge current detector and short detector has the fixed output delay time.


Charge-current detector


When the charge is acceptable, VM voltage is supervised, if the VM voltage becomes equal or more than excess charge current threshold, the status becomes excess charge current detected condition. then OC pin outputs "L" and by turning off the external MOSFET, large current flow is prevented. Output delay of excess charge current is internally fixed.

PACKAGE OUTLINE(SOT23-6)

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions	s In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	<mark>8</mark> °	0°	8°

Suzhou XySemi Electronic Technology Co., Limited. - 8 -

www.xysemi.com.cn

DISCLAIMER

The information described herein is subject to change without notice.

Suzhou XySemi Electronic Technology Co., Limited is not responsible for any problems caused by circuits or diagrams described herein whose ralated industial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.

When the products described herein are regulated products subject to the Wassenaar Arrangement or other arrangements, they may not be exported without authorization from the appropriate governmental authority.

Use of the information described herein for other purposes and/or reproduction or copying without express permission of Suzhou XySemi Electronic Technology Co., Limited is strictly prohibited.

The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment ,medical equipment, security systems, gas equipment,or any aparatus installed in airplanes and other vehicles,without prior written pemission of Suzhou XySemi Electronic Technology Co., Limited.

Although Suzhou XySemi Electronic Technology Co., Limited. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor may occur. The use of these products should therefore give thorough

consideration to safty design, including redundancy, fire-prevention measure and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.