

1. DESCRIPTION

The XA2163 is GaAs MMIC SPDT (Single Pole Double Throw) switch which was developed for 2.4 GHz and 6 GHz dual-band wireless LAN. This device can operate at frequencies from 0.5 to 2.5 GHz, 4.9 to 6.0 GHz and 8.0 GHz, with low insertion loss and high isolation.

This device is housed in a 6-pin plastic TSON (Thin Small Out-line Non-leaded) package. And this package is able to high-density surface mounting.

2. FEATURES

Operating frequency : f = 0.5 to 2.5 GHz, 4.9 to 6.0 GHz and 8.0 GHz

• Switch control voltage : V_{cont} (H) = 2.8 to 5.0 V (3.0 V TYP.)

: $V_{cont}(L) = -0.3 \text{ to } 0.3 \text{ V } (0 \text{ V TYP.})$

● Low insertion loss : L_{ins1} = 0.40 dB TYP. @ f = 2.4 to 2.5 GHz

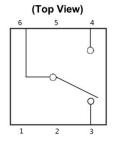
: L_{ins2} = 0.50 dB TYP. @ f = 4.9 to 6.0 GHz

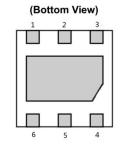
: L_{ins3} = 0.90 dB TYP. @ f = 8.0 GHz

: $L_{ins4} = 0.50 \text{ dB TYP.}$ @ f = 0.5 to 2.5 GHz

● High isolation : I_{SL1} = 38 dB TYP. @ f = 2.4 to 2.5 GHz

: I_{SL2} = 30 dB TYP. @ f = 4.9 to 6.0 GHz : I_{SL3} = 23 dB TYP. @ f = 8.0 GHz : I_{SL4} = 43 dB TYP. @ f = 0.5 to 1.0 GHz : I_{SL5} = 38 dB TYP. @ f = 1.0 to 2.5 GHz


Handling power
 Pin (1 dB) = +31.0 dBm TYP. @ f = 2.5 GHz, V_{cont} (H) = 3.0 V, Vcont (L) = 0 V


: Pin (1 dB) = +29.0 dBm TYP. @ f = 6.0 GHz, V_{cont} (H) = 3.0 V, V_{cont} (L) = 0 V

• High-density surface mounting : 6-pin plastic TSON package (1.5 \times 1.5 \times 0.37 mm)

3. PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	GND
2	V _{cont} 2
3	OUT2 (RX)
4	OUT1 (TX)
5	Vcont1
6	IN (ANT)

Remark Exposed pad : GND

4. TRUTH TABLE

V _{cont} 1	V _{cont} 2	IN (ANT)-OUT1 (TX)	IN (ANT)-OUT2 (RX)	
High	Low	OFF	ON	
Low	High	ON	OFF	

5. ABSOLUTE MAXIMUM RATINGS(TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	V _{cont}	-6.0 to +6.0	V
Input Power	Pin	+32	dBm
Operating Ambient Temperature	TA	-40to +85	°C
Storage Temperature	Tstg	−55 to +135	°C

6. RECOMMENDED OPERATING RANGE(TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Switch Control Voltage (H)	V _{cont} (H)	2.8	3.0	5.0	V
Switch Control Voltage (L)	Vcont (L)	-0.3	0	0.3	V
Operating Frequency 1 Note 1	f1	2.4	=	2.5	GHz
Operating Frequency 2 Note 1	f2	4.9	=	6.0	GHz
Operating Frequency 3 Note 2	f3	-	8.0	=	GHz
Operating Frequency 4 Note 3	f4	0.5	=	1.0	GHz
Operating Frequency 5 Note 3	f5	1.0	-	2.4	GHz

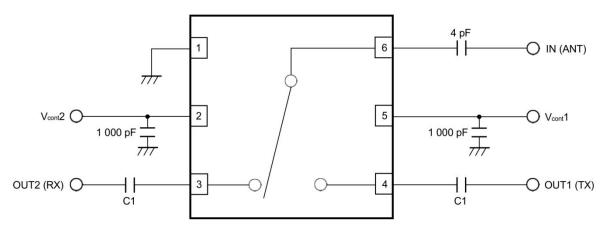
Notes 1. DC blocking capacitors = 4 pF

- 2. DC blocking capacitors = 2 pF
- **3.** DC blocking capacitors = 100 pF

7. ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcont (H) = 3.0 V, Vcont (L) = 0 V, Z0 = 50Ω , DC blocking capacitors = 4 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 2.4 to 2.5 GHz	-	0.40	0.60	dB
Insertion Loss 2	Lins2	f = 4.9 to 6.0 GHz	-	0.50	0.80	dB
Insertion Loss 3	Lins3	f = 8.0 GHz Note 1	-	0.90	_	dB
Insertion Loss 4	Lins4	f = 0.5 to 2.5 GHz ^{Note 2}	-	0.50	_	dB
Isolation 1	ISL1	f = 2.4 to 2.5 GHz	35	38	-	dB
Isolation 2	ISL2	f = 4.9 to 6.0 GHz	27	30	-	dB
Isolation 3	ISL3	f = 8.0 GHz Note 1	-	23	-	dB
Isolation 4	ISL4	f = 0.5 to 1.0 GHz ^{Note 2}	40	43	-	dB
Isolation 5	ISL5	f = 1.0 to 2.5 GHz ^{Note 2}	35	38	-	dB
Input Return Loss 1	RLin1	f = 2.4 to 2.5 GHz	-	15	-	dB
Input Return Loss 2	RLin2	f = 4.9 to 6.0 GHz	-	15	-	dB
Input Return Loss 3	RLin3	f = 8.0 GHz ^{Note 1}	-	15	_	dB
Input Return Loss 4	RLin4	f = 0.5 to 2.5 GHz ^{Note 2}	-	20	-	dB
Output Return Loss 1	RLout1	f = 2.4 to 2.5 GHz	-	15	-	dB
Output Return Loss 2	RLout2	f = 4.9 to 6.0 GHz	-	15	-	dB
Output Return Loss 3	RLout3	f = 8.0 GHz Note 1	-	15	-	dB
Output Return Loss 4	RLout4	f = 0.5 to 2.5 GHz ^{Note 2}	-	20	-	dB
1 dB Loss Compression Input Power 1 Note 3	Pin (1 dB) 1	f = 2.4 to 2.5 GHz	-	+31.0	-	dBm
1 dB Loss Compression Input Power 2 Note 3	Pin (1 dB) 2	f = 4.9 to 6.0 GHz	-	+29.0	-	dBm
Input 3rd Order Intercept Point	IIP ₃	-	-	+55	-	dBm
Switch Control Current	Icont	-	-	0.1	1.0	μA
Switch Control Speed	tsw	50% CTL to 90/10%	-	50	-	ns


Notes 1. DC blocking capacitors = 2 pF

- **2.** DC blocking capacitors = 100 pF
- 3. $P_{in (1 dB)}$ is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution This device is used it is necessary to use DC blocking capacitors.

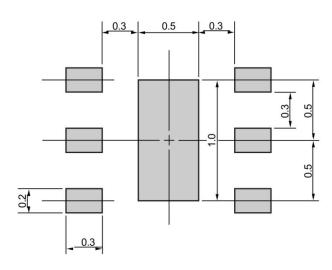
8. EVALUATION CIRCUIT

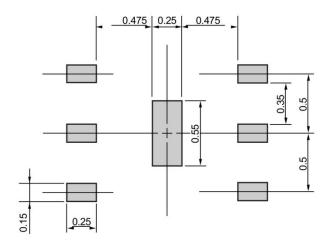
 Remark
 C1: 2.4 to 2.5 GHz and 4.9 to 6.0 GHz
 4 pF

 8.0 GHz
 2 pF

 0.5 to 2.5 GHz
 100 pF

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.


www.xinluda.com 4 / 7 Rev 1.1


9. MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

MOUNTING PAD

SOLDER MASK

Solder thickness: 0.08 mm

Remark The mounting pad and solder mask layouts in this document are for reference only.

When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

www.xinluda.com 5 / 7 Rev 1.1

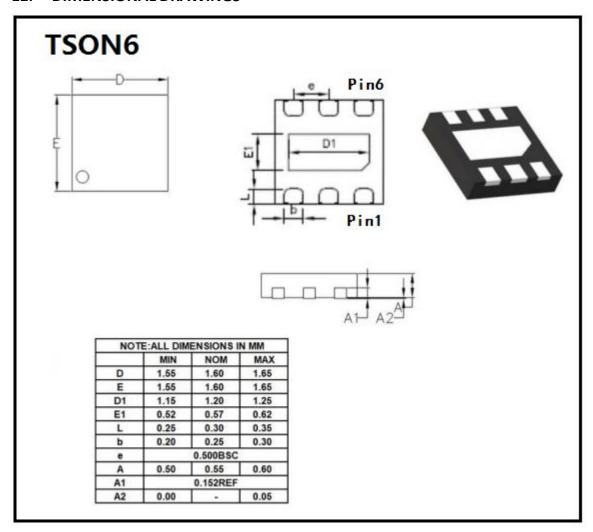
10. COMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below Time	IR260
	at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher : 60 seconds or less		
	Preheating time at 120 to 180°C : 120±30 seconds		
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

Caution Do not use different soldering methods together (except for partial heating).

Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	 Do not burn, destroy, cut, crush, or chemically dissolve the product. Do not lick the product or in any way allow it to enter the mouth.



11. ORDERING INFORMATION

Ordering Information

Part	Device	Package	Body size	Temperature	MSL	Transport	Package
Number	Marking	Type	(mm)	(°C)		Media	Quantity
XA2163	G4X	TSON6	1.60 * 1.60	- 40 to 85	MSL3	T&R	3000

12. DIMENSIONAL DRAWINGS

