

Application Note: SQ24026

Wide Input Voltage Range from 0.8V to 5.5V

20µA Typical (Both Channels)

18µA Typical (Single Channel)

Extremely Low R_{DS(ON)} for the Integrated Switch:

5.5V, Low R_{DS(ON)} Dual-Channel 6A Load Switch

Dual-channel 6A Load Switch

Programmable Soft-start Time

Compact Package: DFN3×2-14

Notebook PC or Tablet PC or Net PC

Low Bias Current:

 $18m\Omega (V_{BIAS}=5V)$

Applications

Desktop PC Server

Features

 \geq

 \triangleright

General Description

SQ24026 is a dual-channel 6A load switch. Extremely low R_{DS(ON)} of the integrated two N-channel FETs help to reduce power loss during the normal operation. Programmable soft-start time controls the slew rate of the output voltage during start-up and minimizes the inrush current. Independent enable control allows the complicated system sequencing control. Integrated a discharge resistor for quick output discharge when switch turns off.

SQ24026 along with a small DFN3×2-14 package provides small PCB area application and better thermal performance.

Ordering Information

Set Top Box E-Book or MID SQ24026 □(□□)□ Smart TV Temperature Code Router Package Code Industrial PC Optional Spec Code Solid-state Drives (SSD) Ordering Number Package type Note SQ24026DUC DFN3×2-14

Typical Applications V_{IN1} 0.8V~ V_{BIAS} Vout <u>13, 1</u>4 0 IN1 OUT1 C₁ 10µF 10µF 3 EN1 12 SST1 MΩ C_3 2.5 4 SQ24026 BIAS 1nF BIAS SST2 C₄ 1nF EN2 $\mathbb{R}_{2} \stackrel{1}{\stackrel{1}{\stackrel{}{\rightarrow}}} \mathbb{Q} \stackrel{1}{\stackrel{1}{\stackrel{}{\rightarrow}}} \mathbb{Q}$ $1M\Omega$ 0.8V~V_{BIAS} V_{OUT2} 6. 8, 9 7 IN2 OUT2 GND C_6 C_2 10µF 11 10µF $\dot{}$

Figure1. Schematic Diagram

Silergy Corp. Confidential- Prepared for Customer Use Only All Rights Reserved.

Pinout (top view)

Top mark: 6Qxyz for SQ24026DUC (Device code: 6Q, x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Pin Description		
IN1	1 2	Power input pin for channel 1		
1111	3	Enable control input for channel 1 Pull it High to enable the channel 1		
EN1		Do not leave it floating		
		Bias nin Bias supply for overdriving the gate of the pass switch between		
BIAS 4		input and output. Recommended the BIAS voltage range is 2.5V to 5.5V.		
E) 10	-	Enable control input for channel 2. Pull it High to enable the channel 2.		
EN2	5	Do not leave it floating.		
IN2	6,7	Power input pin for channel 2.		
OUT2	8,9	Power output pin for channel 2.		
CCT2	10	Soft Start pin of the channel 2. Connect a capacitor from this pin to ground		
5512	10	for slew rate programming. Can be floating.		
GND	11	Ground pin.		
CCT1	12	Soft Start pin of the channel 1. Connect a capacitor from this pin to ground		
5511		for slew rate programming. Can be floating.		
OUT1	13,14	Power output pin for channel 1.		
Thermal Pad	Exposed paddle	Thermal pad, tie to GND.		
C	iller of the second			

AN_SQ24026 Rev. 0.9A © 2021 Silergy Corp.

Electrical Characteristics

 $(V_{IN} = V_{BIAS} = 5V, T_J = -40^{\circ}C$ to $+125^{\circ}C$. Typical values are at $T_J = 25^{\circ}C$, unless otherwise specified. The values are guaranteed by test, design or statistical correlation.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Test Conditions			Min	Тур	Max	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Voltage Range	V _{IN1,2}				0.8		VBIAS	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BIAS Voltage Range	V _{BIAS}				2.5		5.5	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BIAS Quiescent Current	I _{Q_BIAS_1}	$V_{\text{BIAS}} = V_{\text{IN1,2}} = V_{\text{EN1}} = 5V,$ $V_{\text{EN2}} = 0V$ Level $a = 0A = 40^{\circ}\text{C} < T + 285^{\circ}\text{C}$			18	29			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Single Channel)		$V_{\text{BIAS}} = V_{\text{IN1,2}}$	$V_{\rm EN1}=2.5V,$	<1A<05 C		7	14	μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{EN2}=0V, I_{OUT1,2}=0A, -40^{\circ}C < T_A < 85^{\circ}C$			\geq	· ·		 	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BIAS Quiescent Current	I _{Q_BIAS_2}	$I_{OUT1,2}=0A, -40^{\circ}C$		$\langle \cdot \rangle$	20	30	μA		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Both Channels)		$V_{BIAS} = V_{IN1,2} = V_{EN1,2} = 2.5V,$ $I_{OUT1,2} = 0A, -40^{\circ}C < T_A < 85^{\circ}C$				8		15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BIAS Shutdown Current	I _{SHD_BIAS}	V _{EN1,2} =0V,V _{OUT1,2} =0V					2	μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					V _{IN} =5V		0.5	8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V _{BIAS} =5V	V _{IN} =3.3V		0.1	3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V BIAS SV	$V_{IN}=1.8V$		0.07	2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Shutdown Current	ISHD IN	$V_{EN1,2}=0V$,		$V_{IN}=0.8V$		0.04	1	μА	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(per Channel)	-SHD_IN	V _{OUT1,2} =0V	4	$V_{IN}=2.5V$		0.13	3	μΑ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$V_{\text{BIAS}}=2.5V$	$V_{\rm IN}=1.8V$		0.07	2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					$V_{IN}=1.2V$		0.05	2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					$V_{IN}=0.8V$		0.04	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{BIAS}=5V, V_{IN}=0.8V$ to 5V, $I_{out}=200mA, T_A=25^{\circ}C$			18	25	·mΩ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Integrate FET RON	R _{DS(ON)}	$V_{BIAS}=5V, V_{IN}=0.8V$ to 5V, $L_{m}=200mA$ $\times 40^{\circ}C < T_{A} < 85^{\circ}C$				18		27	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(per Channel)		$V_{BIAS}=3.3V, V_{IN}=0.8V \text{ to } 3.3V,$ $L_{-200m}(X,T_{-25})C$				20		27	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{BIAS}=3.3V, V_{IN}=0.8V \text{ to } 3.3V,$				20		30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TNIT	N/	$I_{out}=200 \text{mA}, -40^{\circ} \text{C} < I_{\text{A}} < 85^{\circ} \text{C}$			1.0			N/	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EN Turn-on Inreshold	V EN_ON	~		1.2		0.4	V		
$\begin{array}{c} \begin{tabular}{cccccccccccccccccccccccccccccccccccc$	EN Turn-oll Infestiold	V EN_OFF						0.4	v	
OutputVoltageRise $R_L=10\Omega$, $C_L=0.1\mu F$, $V_{IN}=V_{BIAS}=5V$ 103017502850 $V_{IN}=0.8V, V_{BIAS}=5V$ 185365570115	Resistor	R _{DIS}	\mathbf{O}				190	270	Ω	
Output Voltage Rise $C_L=0.1\mu F$, $V_{IN}=0.8V, V_{BIAS}=5V$ 185 365 570			$R_L=10\Omega$,	$V_{IN} = V_{BIAS}$	=5V	1030	1750	2850		
	Output Voltage Rise	tRISE	C _L =0.1µF,			185	365	570	μs	
Time $C_{SST}=1nF$, $V_{IN}=V_{BIAS}=2.5V$ 1310 2275 3550 μ s	Time		C _{SST} =1nF,			1310	2275	3550		
$V_{\rm EN}=5V$ $V_{\rm IN}=0.8V, V_{\rm BIAS}=2.5V$ 450 825 1280			$V_{EN}=5V$			450	825	1280		
$R_{L}=10\Omega$, $V_{IN}=V_{BIAS}=5V$ 0.1 2 4	4	IFALL	$R_L=10\Omega$,	$V_{IN} = V_{BIAS}$	=5V	0.1	2	4		
$C_{L}=0.1\mu F$, $V_{IN}=0.8V, V_{BIAS}=5V$ 0.1 2 4	Output Voltogo Foll Time		$C_L=0.1 \mu F$,	$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.1	2	4	μs	
Output voltage Fail Time V_{FALL} $C_{SST}=1nF$, $V_{IN}=V_{BIAS}=2.5V$ 0.1 2 4 μ s	Output vonage Fail Time		C _{SST} =1nF,			0.1	2	4		
$V_{\rm EN}=5V$ $V_{\rm IN}=0.8V, V_{\rm BIAS}=2.5V$ 0.1 2 4			$V_{EN}=5V$	$V_{IN}=0.8V, V$	$V_{\rm BIAS}=2.5\rm V$	0.1	2	4	1	
$R_{\rm L}=10\Omega$, $V_{\rm IN}=V_{\rm BIAS}=5V$ 230 460 670		t _{D_ON}	$R_L=10\Omega$,	$V_{IN} = V_{BIAS}$	=5V	230	460	670		
$C_{L}=0.1\mu F$, $V_{IN}=0.8V, V_{BIAS}=5V$ 140 290 435	Trees On Date The		$C_{L}=0.1 \mu F$,	$V_{IN} = 0.8V, V_{IN} = 0.8V, V_{I$	V _{BIAS} =5V	140	290	435	μs	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I urn On Delay I ime		C _{SST} =1nF,	V _{IN} = V _{BIAS}	=2.5V	430	850	1910		
V _{EN} =5V V _{IN} =0.8V,V _{BIAS} =2.5V 320 650 1120			$V_{EN}=5V$	V _{IN} =0.8V,V	V _{BIAS} =2.5V	320	650	1120		
$R_{\rm I} = 10\Omega$, $V_{\rm IN} = V_{\rm BIAS} = 5V$ 1 6 12			$R_{I}=10\Omega$.	$V_{IN} = V_{BIAS}$	=5V	1	6	12	μs	
$C_{L}=0.1\mu F$, $V_{IN}=0.8V, V_{BIAS}=5V$ 1 6 12			$C_{L}=0.1 \text{ uF}.$	$V_{IN} = 0.8 V.V$	V _{BIAS} =5V	1	6	12		
I urn Off Delay Time t_{D_OFF} $C_{SST}=1nF$ $V_{IN}=V_{RIAS}=2.5V$ 51525	I urn Off Delay Time		$C_{SST}=1nF$,	$V_{IN} = V_{RIAS}$	=2.5V	5	15	25		
$V_{EN}=5V$ $V_{IN}=0.8V, V_{BIAS}=2.5V$ 5 15 25			$V_{\rm EN} = 5V$ $V_{\rm IN} = 0.8V, V_{\rm BIAS} = 2.5V$		V _{BIAS} =2.5V	5	15	25		

AN_SQ24026 Rev. 0.9A © 2021 Silergy Corp. Silergy Corp. Confidential- Prepared for Customer Use Only 4 All Rights Reserved.

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Device is mounted on a 2x2 FR-4 substrate PCB, 2OZ copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Exposed pad of DFN3×2-14 packages is the case position for θ_{JC} measurement.

Note 3: The device is not guaranteed to function outside its operating conditions.

Condition:					>
RISE TIME (μ s) 10% - 90%, CL = 0.1 μ F, CIN = 1 μ F, RL = 10 Ω , TYPICAL VALUES at					
25°C, $V_{BIAS} = 5V$, 25V X7R 10% CERAMIC CAP, under different V_{IN} .					
SST cap (pF)	5V	3.3V	1.8V	1.5V	1.2V
0	210	154	104	93	81
220	555	385	231	209	178
470	1022	680	406	342	272
1000	1764	1208	714	616	488
2200	3808	2536	1450	1260	1024
4700	8200	5568	3192	2768	2296

Noto/	Decommonded	Soft start	Timo Dr	ogram Tabla
note4.	Recommended	Son-start	I line Pr	ogram radie

Recommended Formula for C_{SST} & Soft-start slew rate Calculation:

A capacitor to GND on the SSTx pins sets the slew rate for each channel. To ensure desired performance, a capacitor with a minimum voltage rating of 25 V should be used on the SSTx pin. (The equation below accounts for 10% to 90% measurement on VOUT).

Typical Performance Characteristic

AN_SQ24026 Rev. 0.9A © 2021 Silergy Corp. Silergy Corp. Confidential- Prepared for Customer Use Only 6 All Rights Reserved.

SQ24026

AN_SQ24026 Rev. 0.9A © 2021 Silergy Corp. Silergy Corp. Confidential- Prepared for Customer Use Only 7 All Rights Reserved.

Temperature vs. R_{DS(ON)}

AN_SQ24026 Rev. 0.9A © 2021 Silergy Corp.

Applications Information

Operation

SQ24026 is a dual-channel 6A load switch. Extremely low $R_{DS(ON)}$ of the integrated two N-channel FETs help to reduce power loss during the normal operation. Programmable soft-start time controls the slew rate of the output voltage during start-up and minimizes the inrush current. Independent enable control allows the complicated system sequencing control. Integrated a discharge resistor for quick output discharge when switch turns off.

SQ24026 along with a small DFN3×2-14 package provides small PCB area application and better thermal performance.

EN ON/OFF Control

The EN pins control the state of the switches. Asserting EN high enables the switch. EN is active high and has a low threshold, making it capable of interfacing with low-voltage signals. This pin cannot be left floating and must be tied either high or low for proper functionality.

Input Capacitor

For most applications, bypass INx to GND with a 10μ F ceramic capacitor as close as possible to the device. If the power source has significant inductance due to long lead length, the input capacitor clamps the overshoot due to LC tank circuit.

VIN and VBIAS Voltage Range

For optimal R_{ON} performance, make sure $V_{IN} \leq V_{BIAS}$. The device will still be functional if $V_{IN} > V_{BIAS}$ but the R_{ON} may exceed typical value listed in Electrical Characteristics.

<u>Soft-start Time Program</u>

Connect a capacitor from SST pins to GND to control the slew rate of the output voltage at power-on. This pin can be left floating to obtain a predetermined slew rate (minimum T_{SST}) on the output. Equation governing soft start time is shown below:

$$SR_{OUT} = \frac{2.56}{C_{SST}(pF) + 145(pF)} (v / \mu s)$$
$$t_{RISE} = 0.8 \times \frac{V_{IN}}{SR_{out}} (\mu s)$$

PCB Layout Guide

For best performance of the SQ24026, the following guidelines must be strictly followed:

Keep all power trace as short and wide as possible. And it is desirable to use 2-layer or 4layer board for thermal performance and better capability of current flow. At least 6 vias are suggested to put around each power pin to distribute current to different PCB layer. These power pins include VIN and OUT.

2) Place input/output and BIAS capacitor close to the IC for better transient performance.

Figure 3. PCB Layout Suggestion

1. Taping orientation

DFN3×2

3. Others: NA

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Dec.28, 2021	Revision 0.9A	Update the taping spec (Pin 1 is on the upper left.)
Jan.15, 2021	Revision 0.9	Initial Release
Jul. 13, 2021		Contraction of the second of t
	~)	

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

©2021 Silergy Corp.

All Rights Reserved.