

Ai-M61-CBM Specification

Version V1.0.0

Copyright ©2023

Document resume

Version	Date	Develop/revise content	Edition	Approve
V1.0.0	2023.10.30	First Edition	Pengfei Dong	Ning Guan

Content

1. Product Overview	4
1.1. Characteristic	4
2. Main parameters	6
2.1. Static electricity requirement	6
2.2. Electrical characteristics	7
2.3. Wi-Fi RF Performance	7
2.4. BLE RF Performance	8
2.5. Power	8
3. Appearance Dimensions	9
4. Pin definition	11
5. Schematic	14
6. Design Guidance	15
6.1. Module application circuit	15
6.2. Recommended PCB package size	15
6.3. Power Supply	16
6.4. GPIO	16
7. Storage conditions	17
8. Reflow welding curve diagram	17
9. Product Packaging Information	18
10. Contact us	18
Disclaimer and copyright notice	19
Notice	19
Statement	20

1. Product Overview

Ai-M61-CBM is a Wi-Fi 6+BLE5.3 module developed by Shenzhen Ai-Thinker Technology Co., Ltd. The module is equipped with the BL618 chip as the core processor and supports Wi-Fi 802.11b/g/n /ax protocol and BLE protocol support Thread protocol. The BL618 system includes a low-power 32-bit RISC-V CPU with a floating point unit, DSP unit, cache and memory, with a maximum frequency of up to 320M.

Ai-M61-CBM module has rich peripheral interfaces, including Camera, MJPEG, Display, Audio Codec, USB2.0, SDU, Ethernet (EMAC), SD/MMC (SDH), SPI, UART, I2C, I2S, PWM, GPDAC, GPADC, ACOMP and GPIO, etc. It can be widely used in audio and video multimedia, Internet of Things (IoT), mobile devices, wearable electronic devices, smart homes and other fields.

Ai-M61-CBM module Sec Eng module supports AES/SHA/PKA/TRNG and other functions, supports image encryption and signature startup, and meets various security application requirements in the field of Internet of Things.

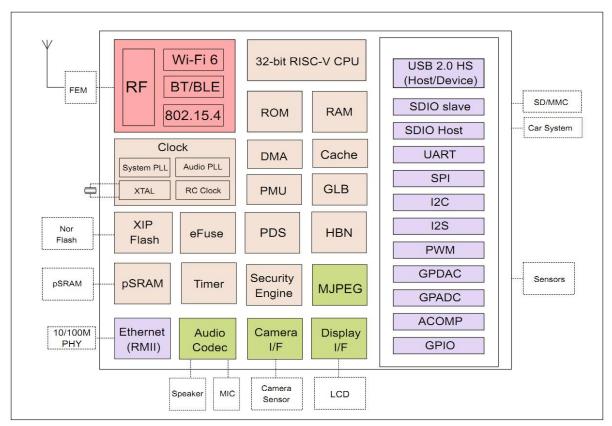


Figure 1 Main chip architecture diagram

1.1. Characteristic

- The package is SMD-44
- Support 2.4GHz working frequency band
- Support IEEE 802.11 b/g/n/ax
- Support BLE5.3
- Support Thread
- Support Wi-Fi/BLE/Thread coexistence
- Wi-Fi security supports WPS/WEP/WPA/WPA2/WPA3
- Support 20/40MHz bandwidth, 1T1R, maximum rate 229.4 Mbps
- Support STA, SoftAP, STA+SoftAP and sniffer mode
- 32-bit RISC-V CPU with FPU and DSP, the highest frequency can reach 320M
- 4MB pSRAM, 532KB SRAM, 128KB ROM, 4Kb eFuse
- Support Camera, MJPEG, Dispaly, Audio Codec, USB2.0, SDU, Ethernet (EMAC), SD/MMC(SDH), SPI, UART, I2C, I2S, PWM, GPDAC, GPADC, ACOMP and GPIO, ect
- Support Camera Sensor DVP interface
- Support Video Codec MJPEG encoding
- Support LCD display (QSPI, DBI and RGB)
- Integrated RF Balum, PA/LNA
- Support secure boot; secure debugging
- Supports XIP QSPI On-The-Fly AES decryption (OTFAD)
- Support TrustZone
- Support AES-CBC/CCM/GCM/XTS mode
- Support MD5, SHA-1/224/256/384/512
- Supports TRNG (True Random Number Generator)
- Supports PKA (Public Key Accelerator) for RSA/ECC
- Wi-Fi fast connection with BLE support
- Universal AT instruction for quick start
- Support secondary development, integrated Windows, Linux development environment

2. Main parameters

Table 1 Description of the main parameters

Model	Ai-M61-CBM
Package	SMD-44
Size 15.0*15.0*2.4(±0.2)mm	
Antenna	Stamp hole
Frequency	2400 ~ 2483.5MHz
Operating temperature	-40℃~ 85℃
Storage temperature	-40°C~ 125°C, < 90%RH
Power supply	Power supply voltage 2.97V ~ 3.6V, power supply current ≥ 500mA
Interface	Support Camera, MJPEG, Dispaly, Audio Codec, USB2.0, SDU, Ethernet (EMAC), SD/MMC (SDH), SPI, UART, I2C, I2S, PWM, GPDAC, GPADC, ACOMP and GPIO, etc
Ю	35
UART rate	Default 115200 bps
Security	WPS/WEP/WPA/WPA2/WPA3
Flash	Default 8MByte

2.1. Static electricity requirement

Ai-M61-CBM is an electrostatic sensitive device. Therefore, you need to take special precautions when carrying it.

Figure 2 ESD preventive measures

2.2. Electrical characteristics

Table 2 Electrical characteristics table

Parameters		Condition	Min.	Typical value	Max.	Unit
Voltage Supply		VDD	2.97	3.3	3.6	V
	VIL	-	-	-	0.3*VDDIO	V
	VIH	-	0.7*VDDIO	-	-	V
I/O	VOL	-	-	0.1*VDDIO	-	V
	VOH	-	-	0.9*VDDIO	-	V
	IMAX	-	-	-	15	mA

2.3. Wi-Fi RF Performance

Table 3 Wi-Fi RF performance table

Description		Unit					
Frequency range	2400 ~ 2483.5MHz			MHz			
	Output Power						
Mode	Min.	Typical value	Max.	Unit			
11ax Mode HE40, PA output power	-	16	-	dBm			
11ax Mode HE20, PA output power	-	17	-	dBm			
11n Mode HT40, PA output power	-	19	-	dBm			
11n Mode HT20, PA output power	-	19	-	dBm			
11g Mode, PA output power	-	19	-	dBm			
11b Mode, PA output power	-	22	-	dBm			
	Receive Sensi	tivity					
Mode	Min.	Typical value	Max.	Unit			
11b, 1 Mbps	-	-98	-	dBm			
11b, 11 Mbps	-	-90	-	dBm			
11g, 6 Mbps	-	-93	-	dBm			
11g, 54 Mbps	-	-76	-	dBm			
11n, HT20 (MCS7)	-	-73	-	dBm			
11ax, HE20 (MCS9)	-	-70	-	dBm			
11ax, HE40 (MCS9)	-	-67	-	dBm			

2.4. BLE RF Performance

Table 4 BLE RF performance table

Description		Unit			
Frequency range	24	2400 ~ 2483.5MHz			
	Output Power				
Rate Mode	Min.	Typical value	Max.	Unit	
1Mbps	-	10	15	dBm	
2Mbps	- 10		15	dBm	
Receive Sensitivity					
Rate Mode	Min.	Typical value	Max.	Unit	
1Mbps sensitivity@30.8%PER	-	-99	-	dBm	
2Mbps sensitivity@30.8%PER	-	-97	-	dBm	

2.5. Power

The following power consumption data is based on a 3.3V power supply and an ambient temperature of 25° C.

- POUT power for all transmit modes is measured at the antenna interface.
- All emission data are measured in continuous emission mode based on 100% duty cycle.

Table 5 Power consumption

Mode	Min.	AVG	Max.	Unit
Tx 802.11b, 11Mbps, POUT=+22dBm	-	374	-	mA
Tx 802.11g, 54Mbps, POUT =+19dBm	-	331	-	mA
Tx 802.11n, MCS7, POUT =+19dBm	-	328	-	mA
Tx 802.11ax, MCS7, POUT =+19dBm	-	293	-	mA
Rx 802.11b, packet length 1024 byte	-	64	-	mA
Rx 802.11g, packet length 1024 byte	-	64	-	mA
Rx 802.11n, packet length 1024 byte	-	64	-	mA
Rx 802.11ax, packet length 1024 byte	-	64	_	mA

3. Appearance Dimensions

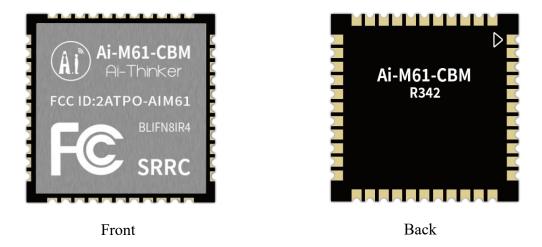


Figure 3 Appearance (the rendering is for reference only, the actual object shall prevail)

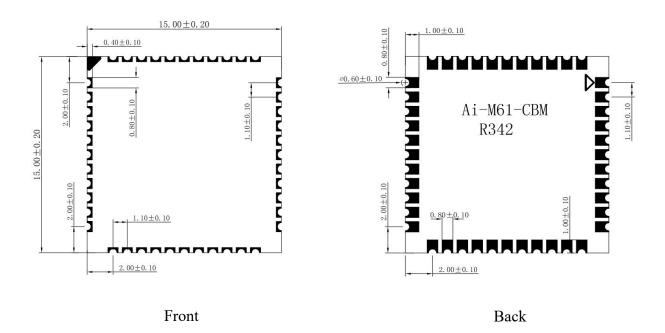
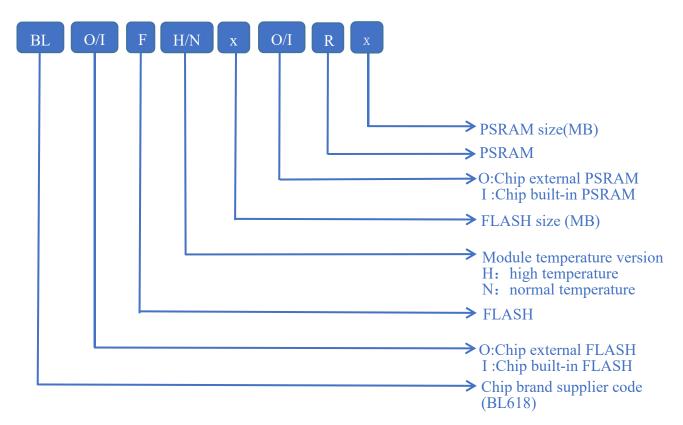



Figure 4 Dimension diagram

Figure 5 Shield printing information

4. Pin definition

The Ai-M61-CBM module has a total of 44 pins. As shown in the pin diagram, the pin function definition table is the interface definition.

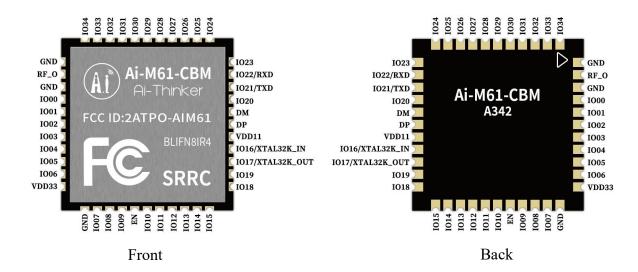


Figure 6 Schematic diagram of module pins

Table 6 Pin function definition table

No.	Name	Function
1	GND	Ground
2	RF_O	RF output pin
3	GND	Ground
4	IO00	GPIO00/SPI_SS/I2S_BCLK/I2C_SCL/PWM0/ADC_CH9
5	IO01	GPIO01/SPI_SCLK/I2S_FS/I2C_SDA/PWM1/ADC_CH8
6	IO02	GPIO02/SPI_MISO/I2S_DI/I2S_RCLK_O/I2C_SCL/PWM2/ADC_CH2
7	IO03	GPIO03/SPI_MOSI/I2S_DO/I2S_RCLK_O/I2C_SDA/PWM3/ADC_CH3
8	IO04	GPIO04/SPI_SS/SF2_CS/I2S_BCLK/I2C_SCL/PWM0
9	IO05	GPIO05/SPI_SCLK/SF2_D1/I2S_FS/I2C_SDA/PWM1
10	IO06	GPIO06/SPI_MOSI/SF2_D2/I2S_DI/I2S_DI//I2S_RCLK_O/I2C_SCL/PW M2
11	VDD33	3.3V power supply; the output current of the external power supply is recommended to be above 500mA.

12	GND	Ground
13	IO07	GPIO07/SPI_MISO/SF2_D0/I2S_DO//I2S_RCLK_O/I2C_SDA/PWM3
14	IO08	GPIO08/SPI_SS/SF2_CLK/I2S_BCLK/I2C_SCL/PWM0
15	IO09	GPIO09/SPI_SCLK/SF2_D3/I2S_FS//I2C_SDA/PWM1
16	EN	Default is as chip enable, high level is effective
17	IO10	GPIO10/SPI_MISO/SDH_DAT1/SF2_D3/I2S_DI/I2S_RCLK_O/I2C _SCLPWM2/ADC_CH7
18	IO11	GPIO11/SPI_MOSI/SDH_DAT0/SF3_CLK/I2S_DO/I2S_RCLK_O/I 2C_SDA/PWM3
19	IO12	GPIO12/SPI_SS/SDH_CLK/SF3_D0/I2S_BCLK/I2C_SCL/PWM0/A DC_CH6
20	IO13	GPIO13/SPI_SCLK/SDH_CMD/SF3_D2/I2S_FS/I2C_SDA/PWM1/ADC_CH5
21	IO14	GPIO14/SPI_MOSI/SPI_MISO/SDH_DAT3/SF3_D1/I2S_DI/I2S_R CLK_O/I2C_SCL/PWM2/ADC_CH4
22	IO15	GPIO15/SPI_MOSI/SDH_DAT2/SF3_CS/I2S_DO/I2S_RCLK_O/I2 C_SDA/PWM3
23	IO18	GPIO18/SPI_MISO/I2S_DI/I2S_RCLK_O/I2C_SCL/PWM2
24	IO19	GPIO19/SPI_MOSI/I2S_DO/I2S_RCLK_O/I2C_SDA/PWM3/ADC_CH1
25	IO17	Not available by default, this IO port is shared with the module's internal 32.768KHz crystal oscillator output PIN. GPIO17/SPI_SCLK/I2S_FS/I2C_SDA/XTAL_32K_OUT/PWM1
26	IO16	Not available by default, this IO port is shared with the module's internal 32.768KHz crystal oscillator input PIN pin. GPIO16/SPI SS/I2S BCLK/I2C SCL/XTAL 32K IN/PWM0
27	VDD11	VDD11 power supply; for ultra-low power usage scenarios, an external power supply of 1.1V is required; for non-ultra-low power usage scenarios, leave it floating.
28	USB_DP	USB_DP
29	USB_DM	USB_DM
30	IO20	GPIO20/SPI_SS/I2S_BCLK/I2C_SCL/PWM0/ADC_CH0
31	IO21/TXD	TXD/GPIO21/SPI_SCLK/I2S_FS/I2C_SDA/PWM1
32	IO22/RXD	RXD/GPIO22/SPI_MOSI/SPI_MISO/I2S_DI/I2S_RCLK_O/I2C_SCL/PW M3
33	IO23	GPIO23/SPI_MOSI/I2S_DO/I2S_RCLK_O/I2C_SDA/PWM3
34	IO24	GPIO24/SPI_SS/I2S_BCLK/I2C_SCL/PWM0

35	IO25	GPIO25/SPI_SCLK/I2S_FS/I2C_SDA/PWM1
36	IO26	GPIO26/SPI_MISO/I2S_DI/I2S_RCLK_O/I2C_SCL/PWM2
37	IO27	GPIO27/SPI_MOSI/I2S_DO/I2S_RCLK_O/I2C_SDA/PWM3/ADC_CH10
38	IO28	GPIO28/SPI_SS/I2S_BCLK/I2C_SCL/PWM0/ADC_CH11
39	IO29	GPIO29/SPI_SCLK/I2S_FS/I2C_SDA/PWM1
40	IO30	GPIO30/SPI_MISO/I2S_DI/I2S_RCLK_O/I2C_SCL/PWM2
41	IO31	GPIO31/SPI_MOSI/I2S_DO/I2S_RCLK_O/I2C_SDA/PWM3
42	IO32	GPIO32/SPI_SS/I2S_BCLK/I2C_SCL/PWM0
43	IO33	GPIO33/SPI_SCLK/I2S_FS/I2C_SDA/PWM1
44	IO34	GPIO34/SPI_MISO/I2S_DI/I2S_RCLK_O/I2C_SCL/PWM2

Note: 1. GPIO2 serves as Bootstrap. When the power is high at the moment of power-on, the module enters the programming mode; when the power is low at the moment of power-on, the module starts normally.

5. Schematic

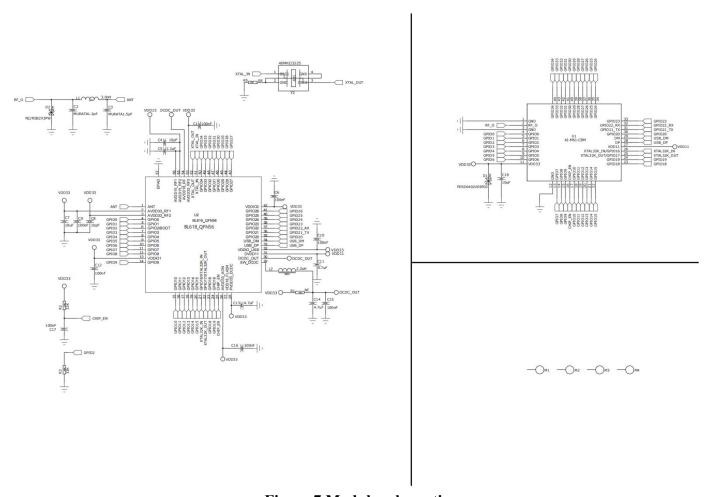


Figure 7 Module schematic

6. Design Guidance

6.1. Module application circuit

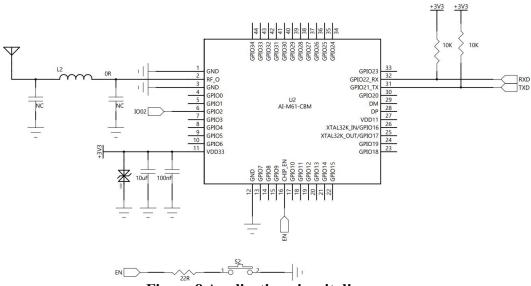


Figure 8 Application circuit diagram

- GPIO2 is the module startup control pin. When it is low, it is in normal working mode, and when it is high, it is in firmware burning mode. The chip internal default low level.
- GPIO16/GPIO17, available by default. These IO ports are shared with the 32.768KHz crystal oscillator PIN pin.

6.2. Recommended PCB package size

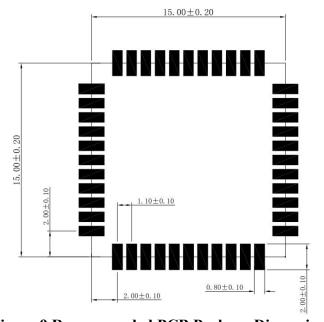


Figure 9 Recommended PCB Package Dimensions

6.3. Power Supply

- Recommended voltage is 3.3V, peak current is above 500mA.
- It is recommended to use LDO for power supply; if DC-DC is used, it is recommended that the ripple be controlled within 100mV.
- It is recommended to reserve the position of dynamic response capacitor in DC-DC power supply circuit, which can optimize the output ripple when the load changes greatly.
- It is recommended to add ESD devices to the 3.3V power interface.

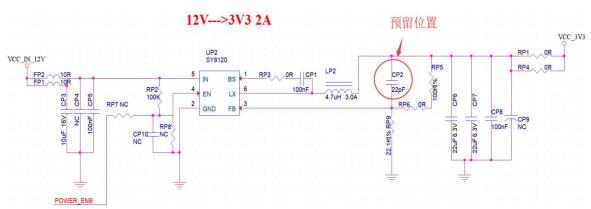


Figure 10 DC-DC step-down circuit diagram

6.4. GPIO

- There are some IO ports on the periphery of the module. If you need to use it, it is recommended to connect a 10-100 ohm resistor in series to the IO port. This can suppress overshoot and make the levels on both sides more stable. Helps with both EMI and ESD.
- For the pull-up and pull-down of the special IO port, please refer to the instructions in the specification sheet, which will affect the startup configuration of the module.
- The IO port of the module is 3.3V. If the level of the main control and the IO port of the module do not match, a level conversion circuit needs to be added.
- If the IO port is directly connected to a peripheral interface or a terminal such as a pin header, it is recommended to reserve ESD devices near the terminals in the IO port wiring.

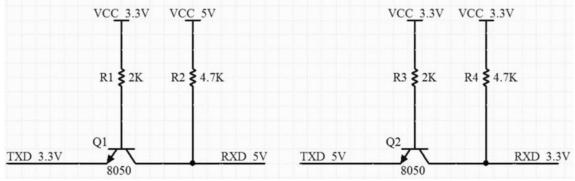


Figure 11 Level convert circuit

7. Storage conditions

Products sealed in moisture-proof bags should be stored in a non-condensing atmospheric environment $<40^{\circ}\text{C}/90\%\text{RH}$.

The module's moisture sensitivity level MSL is level 3.

After the vacuum bag is unsealed, it must be used within 168 hours at 25 ± 5 °C/60%RH, otherwise it will need to be baked before it can be put online again.

8. Reflow welding curve diagram

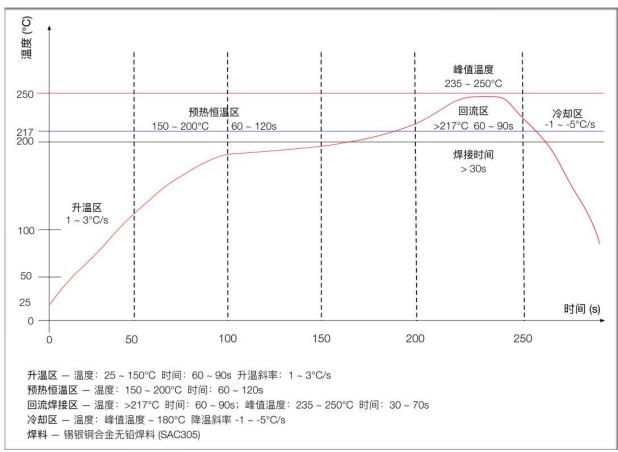


Figure 12 Reflow welding diagram

9. Product Packaging Information

Ai-M61-CBM module is packaged in a tape, 1100pcs/reel.As shown in the below image:

Figure 13 Package and packing diagram

10. Contact us

<u>Ai-Thinker official website</u> <u>Office forum</u> <u>Develop DOCS</u>

<u>LinkedIn</u> <u>Tmall shop</u> <u>Taobao shop</u> <u>Alibaba shop</u>

Technical support email: support@aithinker.com

Domestic business cooperation: sales@aithinker.com

Overseas business cooperation: overseas@aithinker.com

Company Address: Room 403-405,408-410, Block C, Huafeng Smart Innovation Port, Gushu

2nd Road, Xixiang, Baoan District, Shenzhen.

Tel: +86-0755-29162996

WeChat mini program

WeChat official account

Disclaimer and copyright notice

The information in this article, including the URL address for reference, is subject to change without notice.

The document is provided as is without any guarantee responsibility, including any guarantee for merchantability, suitability for a specific purpose, or non-infringement, and any guarantee mentioned elsewhere in any proposal, specification or sample. This document does not bear any responsibility, including the responsibility for infringement of any patent rights arising from the use of the information in this document. This document does not grant any license for the use of intellectual property rights in estoppel or other ways, whether express or implied.

The test data obtained in the article are all obtained from Ai-Thinker's laboratory tests, and the actual results may vary slightly.

All brand names, trademarks and registered trademarks mentioned in this article are the property of their respective owners, and it is hereby declared.

The final interpretation right belongs to Shenzhen Ai-Thinker Technology Co.,Ltd.

Notice

Due to product version upgrades or other reasons, the contents of this manual may be changed.

Shenzhen Ai-Thinker Technology Co.,Ltd.reserves the right to modify the contents of this manual without any notice or prompt.

This manual is only used as a guide. Shenzhen Ai-Thinker Technology Co., Ltd. makes every effort to provide accurate information in this manual. However, Shenzhen Ai-Thinker Technology Co., Ltd. does not guarantee that the contents of the manual are completely free of errors. All statements and information in this manual And the suggestion does not constitute any express or implied guarantee.

Statement

Ai-Thinker may provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, network tools, safety information and other resources (the "Resources") "as is" without warranties of any kind, express or implied. Including, but not limited to, express or implied warranties of suitability, fitness for a particular use, or non-infringement of any third party's intellectual property rights. And specifically declares that it is not liable for any necessary or incidental losses, including but not limited to, arising from the application or the use of any of our products and circuits.

Ai-Thinker reserves the right to release information in this document (including but not limited to metrics and product descriptions) and any changes to our products without prior notice. This document automatically supersedes and replaces all information provided in previous versions of the same document number file.

These resources are available to skilled developers who design with Ai-Thinker products. You are solely responsible for: (1) Selecting the appropriate Ai-Thinker products for your application; (2) Design, validate, and run your application and product throughout its life cycle; (3) Ensure that your application meets all applicable standards, codes and laws, as well as any other functional security, information security, regulatory or other requirements.

Ai-Thinker may authorize you to use these resources only for the development of applications of Essence Products described in this Resource. Without the permission of Ai-Thinker, any unit or individual shall not extract or copy part or all of these resources, and shall not be transmitted in any form. You are not entitled to use any other Ai-Thinker intellectual property rights or any third party intellectual property rights. You shall indemnify you in full for any claims, damages, costs, losses and liabilities arising against Ai-Thinkeror its representatives in connection with the use of these resources, for which Ai-Thinker is not liable.

The products offered by Ai-Thinker are subject to the terms of sale of Ai-Thinker or other applicable terms attached to Essence's products. Essence's availability of these resources does not extend or otherwise change the warranties or warranties disclaimers applicable to product releases.