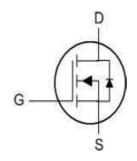


- ★ Green Device
- ★ Super Low Gate
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

## **Product Summary**




| BVDSS | RDSON | ID  |
|-------|-------|-----|
| 60V   | 24mΩ  | 30A |

### Description

The 30N06F is the high cell density trenched N-ch MOSFETs, which provides excellent RDSON and and gate charge for most of the synchronous buck converter applications. The 30N06F meets the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

## PDFN5X6 Pin Configuration





## Package Marking and Ordering Information

| Device Marking | Device | Device Package | Reel Size | Tape width | Quantity |
|----------------|--------|----------------|-----------|------------|----------|
| 30N06          | 30N06  | PDFN5*6        |           |            | 5000     |

## **Absolute Maximum Ratings**

| Symbol         | Parameter                                        | Value      | Unit |
|----------------|--------------------------------------------------|------------|------|
| Vos            | Drain-Source Voltage                             | 60         | V    |
| Vgs            | Gate-Source Voltage                              | ±20        | V    |
| Ib@Tc=25°C     | Continuous Drain Current, Vcs @ 10V <sup>1</sup> | 30         | А    |
| In@Tc=100°C    | Continuous Drain Current, Vcs @ 10V <sup>1</sup> | 15         | А    |
| Ірм            | Pulsed Drain Current₂                            | 60         | Α    |
| EAS            | Single Pulse Avalanche Energy <sup>3</sup>       | 50         | mJ   |
| las            | Avalanche Current                                | 30         | Α    |
| Pd@Ta=25°C     | Total Power Dissipation₄                         | 20         | W    |
| Тѕтс           | Storage Temperature Range                        | -55 to 150 | °C   |
| T <sub>J</sub> | Operating Junction Temperature Range             | -55 to 150 | °C   |

#### **Thermal Data**

| Symbol | Symbol Parameter                           |  | Max. | Unit |
|--------|--------------------------------------------|--|------|------|
| Reja   | Reja Thermal Resistance Junction-Ambient ₁ |  | 62   | °C/W |



## Electrical Characteristics (T<sub>J</sub> =25 °C unless otherwise specified)

| Symbol                              | Parameter                                      | Test condition                                                    | Min. | Тур.  | Max. | Units |
|-------------------------------------|------------------------------------------------|-------------------------------------------------------------------|------|-------|------|-------|
| BVDSS                               | Drain-Source Breakdown Voltage                 | V <sub>G</sub> s=0V , I <sub>D</sub> =250uA                       | 60   |       |      | V     |
| △BV <sub>DSS</sub> /△T <sub>J</sub> | BV <sub>DSS</sub> Temperature Coefficient      | Reference to 25°C , lp=1mA                                        |      | 0.063 |      | V/°C  |
| D                                   | Outin David Common Co. David Lang              | V <sub>GS</sub> =10V, I <sub>D</sub> =15A                         |      | 24    | 30   | O     |
| Rds(on)                             | Static Drain-Source On-Resistance <sup>2</sup> | Vgs=4.5V, Ip=10A                                                  |      | 25    | 38   | mΩ    |
| V <sub>G</sub> S(th)                | Gate Threshold Voltage                         | \\\\                                                              | 1.2  |       | 2.5  | V     |
| $\triangleV\!\text{GS(th)}$         | V <sub>GS(th)</sub> Temperature Coefficient    | Vgs=Vps, lp=250uA                                                 |      | -5.24 |      | mV/°C |
| lana                                | Drain Source Leakage Current                   | V <sub>DS</sub> =48V , V <sub>GS</sub> =0V , T <sub>J</sub> =25°C |      |       | 1    |       |
| loss                                | Drain-Source Leakage Current                   | Vps=48V, Vgs=0V, Tj=55°C                                          |      |       | 5    | uA uA |
| Igss                                | Gate-Source Leakage Current                    | V <sub>G</sub> S=±20V, V <sub>D</sub> S=0V                        |      |       | ±100 | nA    |
| gfs                                 | Forward Transconductance                       | Vps=5V, lp=15A                                                    |      | 17    |      | S     |
| Rg                                  | Gate Resistance                                | V <sub>DS</sub> =0V, V <sub>GS</sub> =0V, f=1MHz                  |      | 3.2   |      | Ω     |
| Qg                                  | Total Gate Charge (4.5V)                       |                                                                   |      | 12.6  |      |       |
| Qgs                                 | Gate-Source Charge                             | Vps=48V, Vgs=4.5V, lp=12A                                         |      | 3.2   |      | nC    |
| Qgd                                 | Gate-Drain Charge                              |                                                                   |      | 6.3   |      |       |
| Td(on)                              | Turn-On Delay Time                             |                                                                   |      | 8     |      |       |
| T <sub>r</sub>                      | Rise Time                                      | $V_{DD}$ =30V, $V_{GS}$ =10V, $R_{G}$ =3.3 $\Omega$ ,             |      | 14.2  |      | no    |
| Td(off)                             | Turn-Off Delay Time                            | I <sub>D</sub> =10A                                               |      | 24.4  |      | ns    |
| Tf                                  | Fall Time                                      |                                                                   |      | 4.6   |      |       |
| Ciss                                | Input Capacitance                              |                                                                   |      | 1378  |      |       |
| Coss                                | Output Capacitance                             | Vps=15V, Vgs=0V, f=1MHz                                           |      | 86    |      | pF    |
| Crss                                | Reverse Transfer Capacitance                   |                                                                   |      | 64    |      |       |

#### **Diode Characteristics**

| Symbol         | Parameter                                | Test condition                                                | Min. | Тур. | Max. | Units |
|----------------|------------------------------------------|---------------------------------------------------------------|------|------|------|-------|
| I <sub>S</sub> | Continuous Source Current <sup>1,5</sup> | V <sub>G</sub> =V <sub>D</sub> =0V, Force Current             |      |      | 30   | Α     |
| Ism            | Pulsed Source Current <sub>2,5</sub>     | V <sub>G</sub> -V <sub>D</sub> -0V, Force Current             |      |      | 60   | А     |
| VsD            | Diode Forward Voltage <sub>2</sub>       | V <sub>GS</sub> =0V, I <sub>S</sub> =1A, T <sub>J</sub> =25°C |      |      | 1.2  | V     |

- 1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width  $\leq$  300us , duty cycle  $\leq$  2%
- 3.The EAS data shows Max. rating . The test condition is V<sub>DD</sub>=25V,V<sub>GS</sub>=10V,L=0.1mH,IAS=22.6A 4.The power dissipation is limited by 150°C junction temperature
- 5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.



## Typical Electrical and Thermal Characteristics (Curves)

# Figure1: Output Characteristics

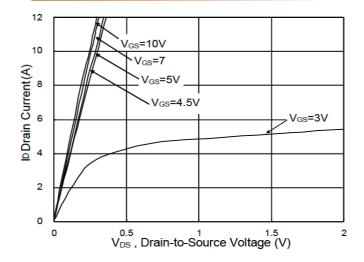



Figure 3:Forward Characteristics of Rev

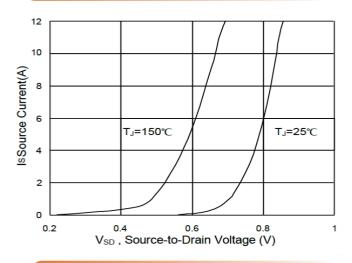



Figure 5: Normalized VGS(th) v.s TJ

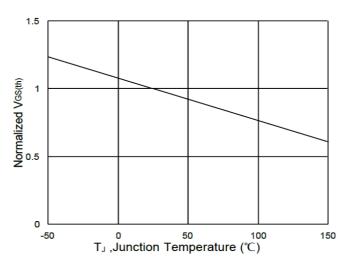



Figure 2: On-Resistance v.s Gate-Source

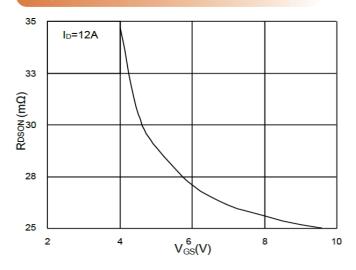



Figure 4: Gate-Charge Characteristics

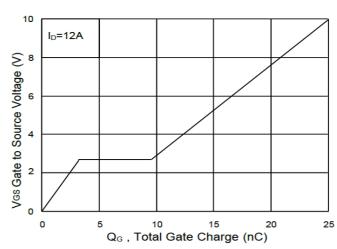
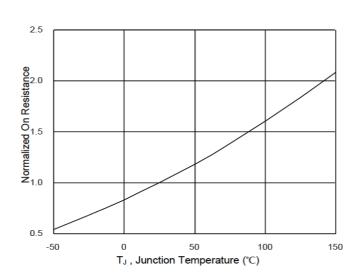




Figure 6:Normalized RDSON v.s TJ





### **Typical Performance Characteristics**

Figure 7: Capacitance

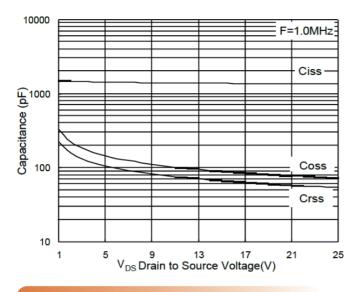



Figure 8: Safe Operating Area

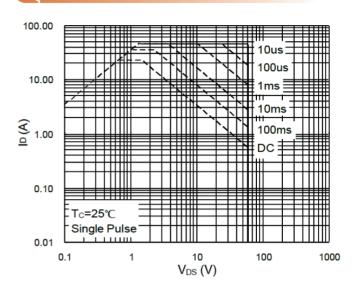



Figure 9: Normalized Maximum Transie

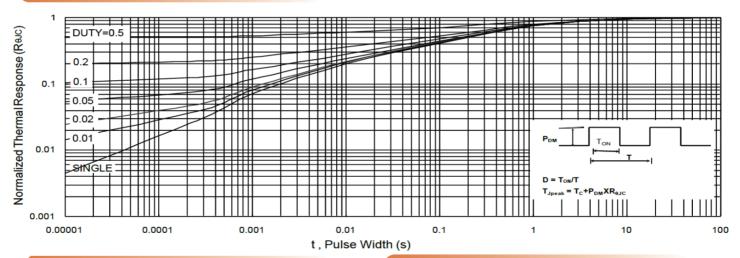



Figure 10:Switching Time Waveform

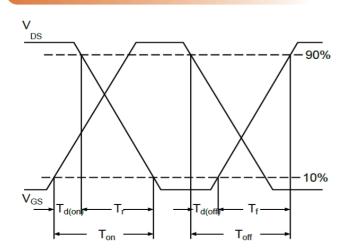
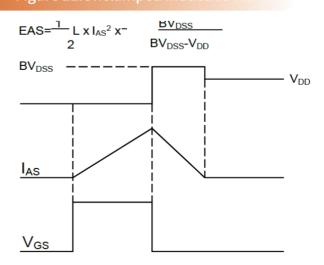
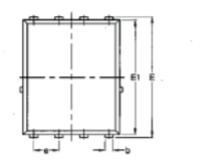
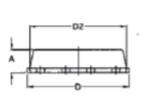
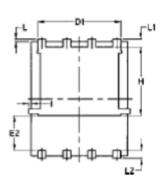





Figure 11:Unclamped Inductive Wavefor




# Package Mechanical Data-DFN5\*6-8L-JQ Single









| Symbol | Common   |        |          |        |  |  |
|--------|----------|--------|----------|--------|--|--|
|        | mm       | mm     |          |        |  |  |
|        | Mim      | Max    | Min      | Max    |  |  |
| Α      | 1.03     | 1.17   | 0.0406   | 0.0461 |  |  |
| b      | 0.34     | 0.48   | 0.0134   | 0.0189 |  |  |
| С      | 0.824    | 0.0970 | 0.0324   | 0.082  |  |  |
| D      | 4.80     | 5.40   | 0.1890   | 0.2126 |  |  |
| D1     | 4.11     | 4.31   | 0.1618   | 0.1697 |  |  |
| D2     | 4.80     | 5.00   | 0.1890   | 0.1969 |  |  |
| E      | 5.95     | 6.15   | 0.2343   | 0.2421 |  |  |
| E1     | 5.65     | 5.85   | 0.2224   | 0.2303 |  |  |
| E2     | 1.60     | /      | 0.0630   | /      |  |  |
| e      | 1.27 BSC |        | 0.05 BSC |        |  |  |
| L      | 0.05     | 0.25   | 0.0020   | 0.0098 |  |  |
| L1     | 0.38     | 0.50   | 0.0150   | 0.0197 |  |  |
| L2     | 0.38     | 0.50   | 0.0150   | 0.0197 |  |  |
| Н      | 3.30     | 3.50   | 0.1299   | 0.1378 |  |  |
| I      | /        | 0.18   | /        | 0.0070 |  |  |