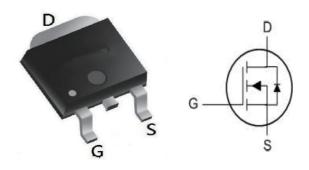
N-Ch 30V Fast Switching MOSFETs

S

★ Green Device Available

- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- * 100% EAS Guaranteed

Description


The 80N03 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 80N03 meet the RoHS and Green Product, requirement 100% EAS guaranteed with full function reliability approved.

Product Summary	RoH

BVDSS	RDSON	ID
30V	4.8mΩ	80A

TO252 Pin Configuration

Symbol	Parameter	Ra	Rating		
	Parameter	10s	Steady State	Units	
Vds	Drain-Source Voltage	:	30		
Vgs	Gate-Source Voltage	±	:20	V	
I⊳@Tc=25°C	Continuous Drain Current, VGs @ 10V ¹ 80				
ID@Tc=100°C	Continuous Drain Current, Vgs @ 10V ¹		50		
ID@TA=25°C	Continuous Drain Current, Vos @ 10V ¹	30 19		А	
Id@Ta=70°C	Continuous Drain Current, Vgs @ 10V ¹	25 16		А	
lдм	Pulsed Drain Current ²	1	А		
Eas	Single Pulse Avalanche Energy ³ 144.7			mJ	
las	Avalanche Current 53.8		3.8	А	
P₀@Tc=25°C	Total Power Dissipation ⁴ 62.5		2.5	W	
Pd@Ta=25°C	Total Power Dissipation ⁴	6		W	
Тѕтб	Storage Temperature Range	-55	-55 to 175		
ТJ	Operating Junction Temperature Range -55 to 175				

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		62	°C/W
Reja	Thermal Resistance Junction-Ambient 1 (t ≤10s)		25	°C/W
Rejc	Thermal Resistance Junction-Case ¹		2.4	°C/W

Absolute Maximum Ratings

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , lb=250uA	30			V	
△BVbss/△TJ	BVDSS Temperature Coefficient	Reference to 25°C ,		0.0213		V/°C	
		Vgs=10V , I⊳=30A		4.8	6		
Rds(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , Ib=15A		7.8	9	mΩ	
VGS(th)	Gate Threshold Voltage		1	1.5	2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	Vgs=Vbs , lb =250uA		-5.73		mV/°C	
		VDS=24V, VGS=0V,			1		
ldss	Drain-Source Leakage Current	VDS=24V, VGS=0V,			5	uA	
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA	
gfs	Forward Transconductance	Vos=5V , lo=30A		26.5		S	
Rg	Gate Resistance	Vos=0V , Vgs=0V ,		1.4	2.8	W	
Qg	Total Gate Charge (4.5V)			31.6			
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , ID=15A		8.6		nC	
Qgd	Gate-Drain Charge	10-13A		11.7			
Td(on)	Turn-On Delay Time			9			
Tr	Rise Time	VDD=15V , VGS=10V ,		19		1	
Td(off)	Turn-Off Delay Time	Rg=3.3Ω lb=15A		58		ns	
Tf	Fall Time]		15.2]	
Ciss	Input Capacitance			3075	4000		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		400	530	рF	
Crss	Reverse Transfer Capacitance			315		1	

Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5}				80	A
Іѕм	Pulsed Source Current ^{2,5}	Vg=Vb=0V , Force Current			132	А
Vsd	Diode Forward Voltage ²	Vgs=0V , ls=1A , Tj=25°C			1	V
trr	Reverse Recovery Time			18		nS
Qrr	Reverse Recovery Charge	lF=30A , dl/dt=100A/µs ,TJ=25℃		8		nC

Note:

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is V_{DD}=25V,V_{GS}=10V,L=0.1mH,I_{AS}=53.8A 4.The power dissipation is limited by 175°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation

Typical Electrical and Thermal Characteristics (Curves)

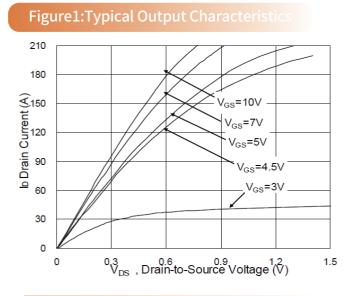


Figure 3: Forward Characteristics of Reve

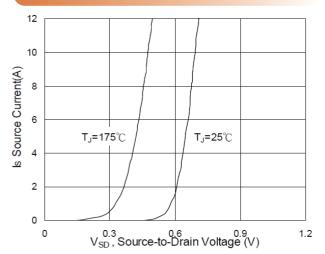


Figure 5: Normalized VGS(th) vs. TJ

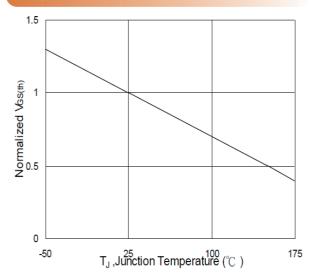


Figure 2: On-Resistance vs. G-S Voltage

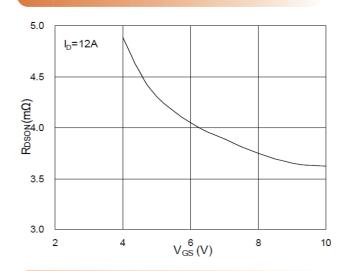


Figure 4: Gate-Charge Characteristics

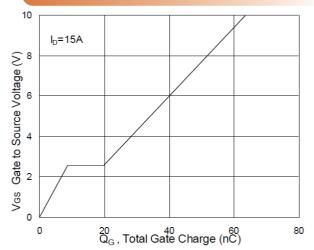
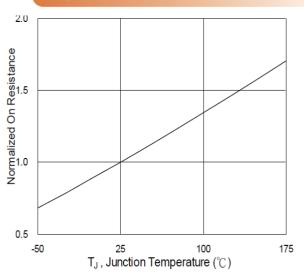
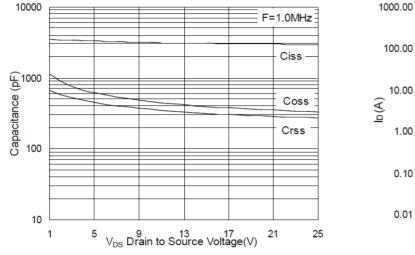
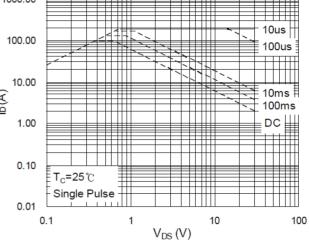
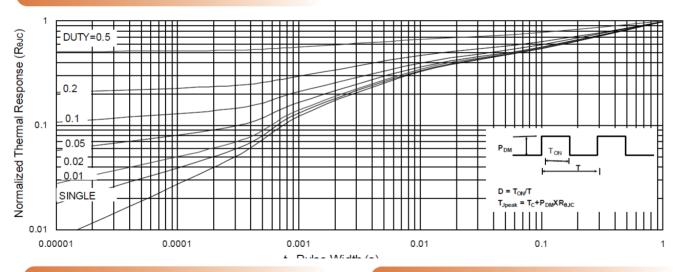



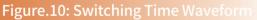
Figure 6: Source- Drain Diode Forward

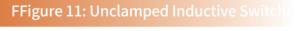


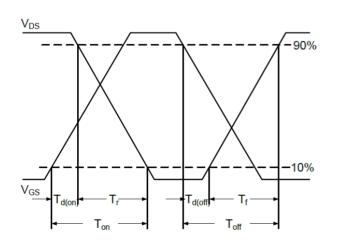
80N03

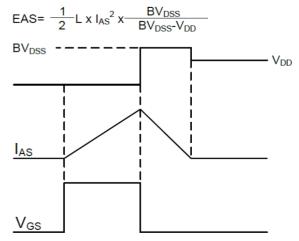

Typical Performance Characteristics

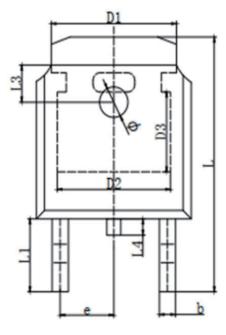


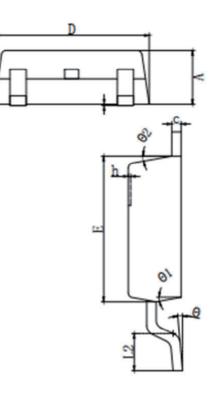





Figure 9: Normalized Maximum Transier







N-Ch 30V Fast Switching MOSFETs

80N03

TO-252 Package outline

Sumb o 1	MILLMETER		Comb a 1	MILLMETER		
Symbol	MIN	MAX	Symbol -	MIN	MAX	
А	2.200	2.400	h	0.000	0.200	
A1	0.000	0.127	L	9.900	10.30	
b	0.640	0.740	L1	2.888REF		
с	0.460	0.580	L2	1.400	1.700	
D	6.500	6.700	L3	1.600REF		
D1	5.33	4REF	L4	0.600 1.000		
D2	4.82	6REF	Ø	1.100 1.300		
D3	3.16	6REF	θ	0° 8°		
Е	6.00	6.200	θ_1	9° TYP2		
е	2.28	6TYP	θ 2	9° TYP		