STI8070B

5A, 2.1MHz, I²C Programmable Synchronous Buck Converter with WLCSP-20 Package

FEATURES

- Compatible I²C Interface Up to 3.4MHz
- Input Voltage Range :2.7V~5.5V
- Up to 5A Output Current
- Mode Selection Between PFM and PWM at Light Load
- Typical 50µA Quiescent Current in Light Load PFM Mode
- 2.1MHz Switching Frequency
- Integrated Soft-Start
- Input UVLO and OVP
- Build in Thermal Shutdown and OCP
- 0.25µH Inductor Support
- I²C address: 0x82
- Compact WLCSP-20 Package

APPLICATIONS

- Smart Phones
- DSP or CPUs Processors
- Tablet, MID

APPILCATIONS

GENERAL DESCRIPTION

STI8070B is an I²C Programmable, high efficiency, Synchronous Buck converter that 2.1MHz. operates in wide input voltage range from 2.7V to 5.5V. The output Voltage could be programmed from 0.7125V to 1.5V. Very low standby current ensure high efficiency in light load PFM mode. The forced PWM mode could be set to avoid application problems caused by low switching frequency. A COT (Constant On-Time) structure is adaptive to achieve the fixed switching frequency and fast load transient response. STI8070B provides up to 5A output current with Integrated $28m\Omega(high side)$ and $18m\Omega(low side)$ power switch. STI8070B also implement an internal cycle-by-cycle soft-start and over current protection function. In addition, the input UVLO and OVP protection, Thermal shutdown protection.

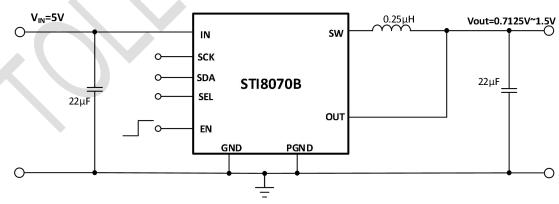


Figure 1. Basic Application Circuit

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Min	Max	Unit
All Voltage Range	-0.3	6.5	V
Junction Temperature (Note2)	-40	150	°C
Storage Temperature	-65	150	°C
Junction-to-ambient Thermal Resistance	-	38	°C/W
Junction-to-case Thermal Resistance	-	9	°C/W
Power Dissipation	-	2.6	W

PACKAGE/ORDER INFORMATION

Top Mark: S70BXXX (S70B: Device Code, XXX: Inside Code)

Part Number	Package	Top mark	Quantity/ Reel	
STI8070B	WLCSP-20	S70BXXX	3000	

STI8070B devices are Pb-free and RoHS compliant.

PIN DESCRIPTIONS

Pin	Name	Function				
A1	SEL	Voltage select pin, 0: VSEL0 register, 1: VSEL1 register				
A2	EN	Enable pin, 0: Shut down, 1: Enable				
A3	SCK	I ² C Clock pin				
A4	OUT	Output voltage sense pin, Connect to output capacitor				
B1	SDA	I ² C Data pin				
B2~B3						
C1~C4	PGND	Power Ground pins				
B4	AGND	Analog Ground pin				
D1~D2	INI	Power input nin. Connect to input conceitor				
E1~E2	IN	Power input pin, Connect to input capacitor				
D3~D4	SW	Switching Din, Connect to external Inductor				
E3~E4	300	Switching Pin, Connect to external Inductor				
	TING					

ESD RATING

Items	Description	Value	Unit
V _{ESD}	Human Body Model for all pins	±2000	V

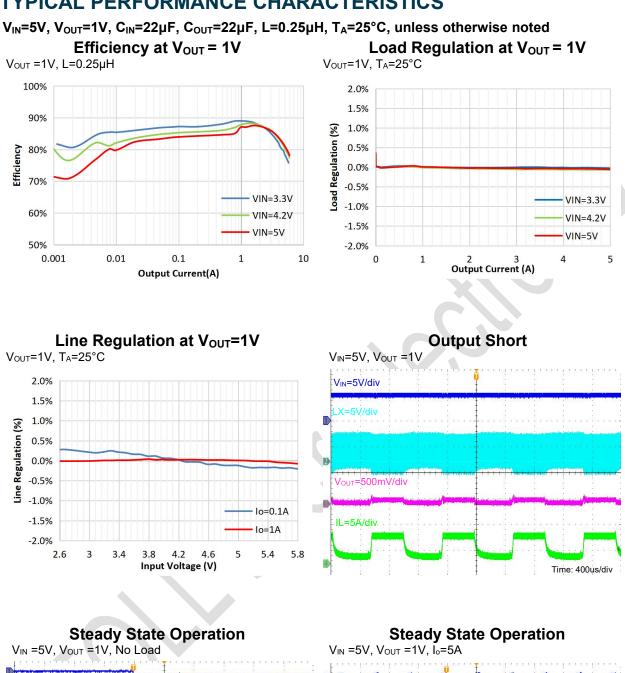
JEDEC specification JS-001

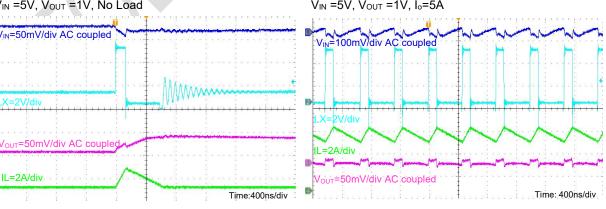
RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.7	5.5	V
TA	Operating Temperature Range	-40	85	°C

ELECTRICAL CHARACTERISTICS

(V_{IN} = 3.6V, V_{OUT} = 1V, T_A = 25°C, unless otherwise noted.)

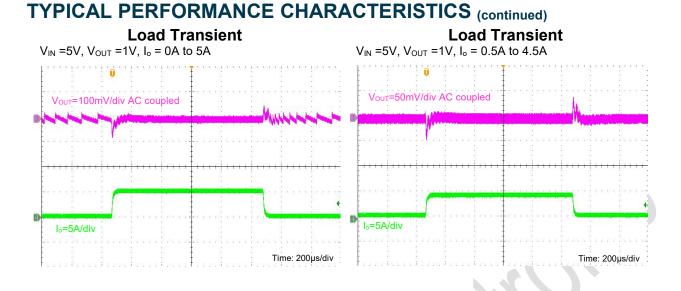

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	VIN		2.7		5.5	V
Under Voltage Lockout	V _{UVLO}	Vin rising		2.6		V
UVLO Hysteresis	VUVLO_HY			180		mV
Input OVP Voltage	VINOVP	Vin rising		6.15		V
Input OVP Hysteresis	V _{OVP_HY}			400		mV
OVP blank time	T _{OVP_BT}			20		μs
Input Supply Current	l _{iN}	EN=1, I _{load} =0, V _{out} >105%*V _{set}		50		μA
	I _{SDN}	EN=0		0.1	1	μA
Input Shutdown current	I _{SDI2C}	I ² C set shutdown, EN=1		20	30	μA
EN/SDA/SCK/SEL Logic high Threshold	VINH		1.5			V
EN/SDA/SCK/SEL Logic low	VINL				0.4	V
Threshold	VINL				0.4	v
PFET peak Current limit (Note 3)	I _{LIM_MAX}		6.7			Α
Switch On-Resistance (high side) (Note 3)	R _{DSONH}			28		mΩ
Switch On-Resistance (low side) (Note 3)	Rdsonl	S		18		mΩ
Switching Frequency	Fosc			2.1		MHz
Minimum Turn-on Time	ton_min			52		ns
Regulator Enable to Regulated V _{OUT}	t _{sst}			300		μs
Thermal Shutdown Threshold (Note 3)	T _{SDN}	Thermal rising		165		°C
Thermal Shutdown Hysteresis (Note 3)	T _{SDN_HY}			30		°C

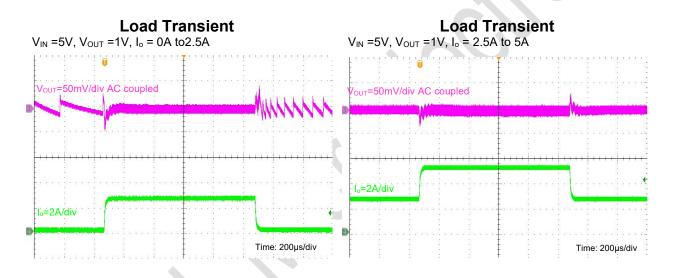

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

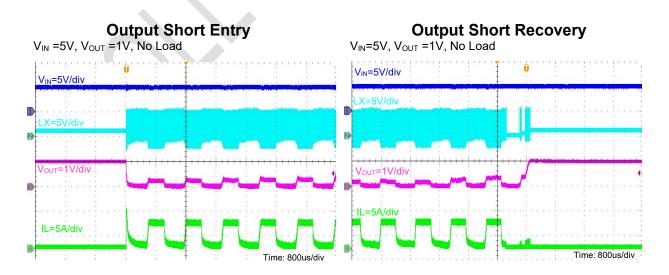
Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) \times \theta_{JA}$.

Note 3: Thermal shutdown threshold and hysteresis are guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

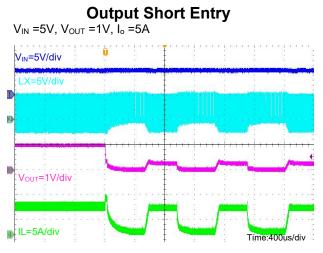


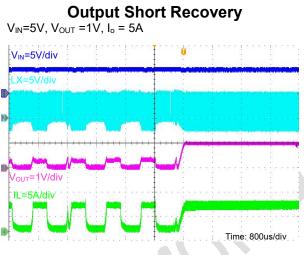

www.toll-semi.com


2

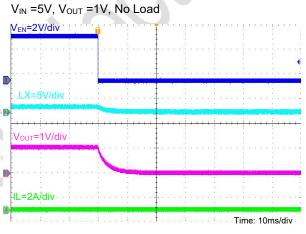
3

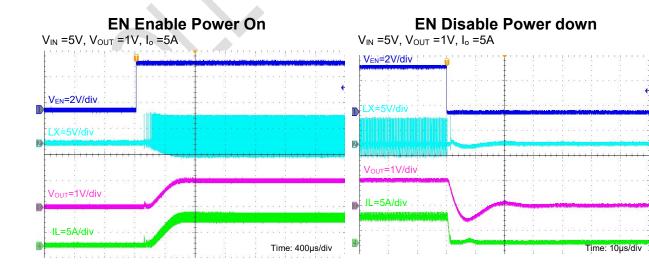
2





www.toll-semi.com


TYPICAL PERFORMANCE CHARACTERISTICS (continued)



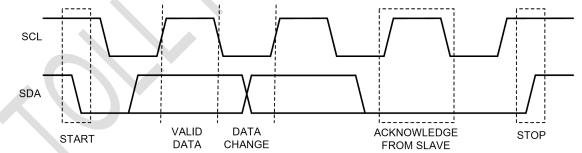
EN Enable Power On VIN =5V, Vout =1V, No Load

EN Disable Power down

FUNCTIONAL DESCRIPTION

Enable

EN Pin controls chip start, and STI8070B allows software to enable converter by I²C interface, BUCK EN0 and BUCK EN1 bits. The true table is showed as below.


Piı	Pins		lits	
EN	SEL	BUCK_EN0	BUCK_EN1	OUTPUT
0	х	х	x	OFF
1	0	0	x	OFF
1	0	1	x	ON
1	1	Х	0	OFF
1	1	x	1	ON

I²C Timing

STI8070B allows the HOST to set the output voltage or other configurable function using an I²C compatible interface and STI8070B always operates as a SLAVE device. The I²C interface supports CLK frequency up to 3.4MHz and all data is transmitted with MSB(bit 7) first. In hex form, the address of STI8070B is 0x82.

STI8070B is addressed using a 7-bit address followed by a direction bit. If the direction bit is 1, the HOST reads data from STI8070B and if the direction bit is 0, the HOST writes data to STI8070B.

A transaction begins with a START condition which is a HIGH to LOW transition of the SDA line while the SCL is HIGH. A transaction ends with a STOP condition which is a LOW to HIGH transition of the SDA line while the SCL is HIGH. The data on the SDA line must stay unchanged when the SCL line is HIGH and vary only when the SCL is LOW, otherwise, STI8070B will consider it as a START or STOP condition. Each transaction contains nine clock pulses. During the ninth pulse, if the SDA line is pulled LOW by STI8070B, it is defined as an acknowledge(ACK) bit, otherwise, it is defined as an NO ACK bit.

Write period

When the master needs to write data to STI8070B, it generates a START condition followed by the 7-bit address 0x82 and the direction bit 0, STI8070B then acknowledges by pulling SDA LOW during the ninth pulse; the master then transmits register address and the data it needs to write, the operation ends with a STOP condition.


```
www.toll-semi.com
```


Read period

When the master needs to read data from STI8070B, it generate a START condition followed by the 7-bit address 0x82 and the direction bit 0, the master then transmit register address it needs to read from; after STI8070B acknowledges to the operation, the master issues a START condition again, followed by the 7-bit address 0x82 but the direction bit is modified to 1; the STI8070B then acknowledges and shifts out the data to the master, the master gives NO ACK and ends the operation with a STOP condition.

S	S1AVE ADDRESS+W	A	REGISTER ADDRESS	A	S	S1AVE ADDRESS+R	A	DATA	N	Р	
	DRIVEN BY THE	MAS	STER S ST	ART	A	ACKNOWLEDGE		Ś			5
	DRIVEN BY THE	SL	AVE P ST	°0P	N	NO ACKNOWLEDG	E	O_{NJ}			

I2C device Address: 0x82

1. VSEL0(0x00)

Field	Bit	R/W	Default	Description
BUCK_EN	7	R/W	1	Software buck enable. When EN pin is low, the regulator is off. When EN pin is high, BUCK EN
0			bit takes precedent.	
MODEO	6	R/W	0	0=Allow auto-PFM mode during light load.
MODE0	0			1=Forced PWM mode
				000000 = 0.7125V
				000001 = 0.7250V
			010111(Vout=1V)	000010 = 0.7375V
VSEL0	5:0	R/W	(0.7125+n*0.0125)	
			(0.7123111 0.0123)	010111 = 1.0000V
				111111 = 1.5000V

2. VSEL1(0x01)

Field	Bit	R/W	Default	Description
BUCK EN				Software buck enable. When EN pin is low, the
	7	R/W	1	regulator is off. When EN pin is high, BUCK_EN
I				bit takes precedent.
MODE1	6	R/W	0	0=Allow auto-PFM mode during light load.
MODET	0	r///	0	1=Forced PWM mode
				000000 = 0.7125V
VSEL1	E.0		010111(Vout=1V)	000001 = 0.7250V
VSELI	5:0	R/W	(0.7125+n*0.0125)	000010 = 0.7375V

www.toll-semi.com

STI8070B

		010111 = 1.0000V
		111111 = 1.5000V

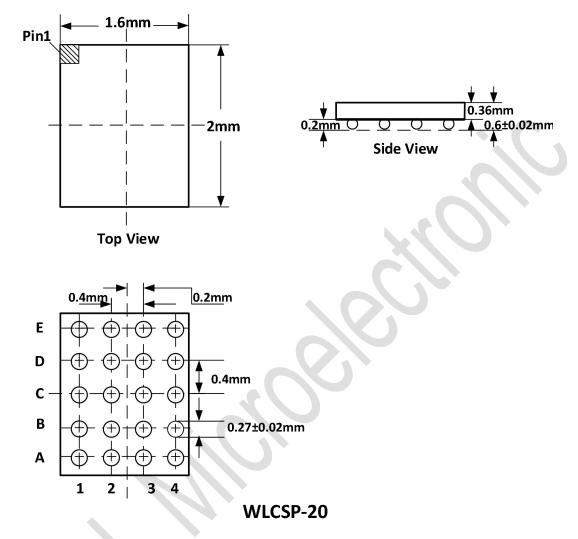
3. Control Register(0x02)

Field	Bit	R/W	Default	Description	
Output	7	R/W	1	0 = discharge resistor is disabled.	
Discharge				1 = discharge resistor is enabled.	
				Set the slew rate for positive voltage transitions.	
				000 = 10mV/0.15µs	
				001 = 10mV/0.3µs	
			000(10mV/0.15µs)	010 = 10mV/0.6µs	
Slew Rate	6:4	R/W		011 = 10mV/1.2µs	
				100 = 10mV/2.4µs	
				101 = 10mV/4.8µs	
				110 = 10mV/9.6µs	
				111 = 10mV/19.2µs	
reserved	3	R/W	0	Always reads back 0	
Reset	2	R/W	0	Setting to 1 resets all registers to default values.	
reserved	1:0	R/W	00	Always reads back 0	
I. ID1 Register(0x03)					

4. ID1 Register(0x03)

U	<u> </u>	-		
Field	Bit	R/W	Default	Description
VENDOR	7:5	R	100	IC vendor code.
reserved	4	R	0	Always reads back 0
DIE_ID	3:0	R	1000	IC option code

5. ID2 Register(0x04)

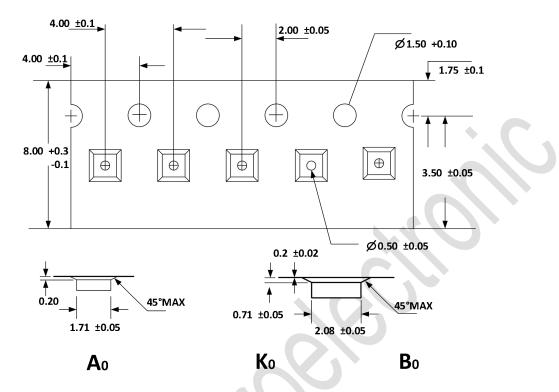

Field	Bit	R/W	Default	Description
reserved	7:4	R	0000	Always Reads back 0
DIE_REV	3:0	R	0001	IC mask revision code

6. PGOOD Register(0x05)

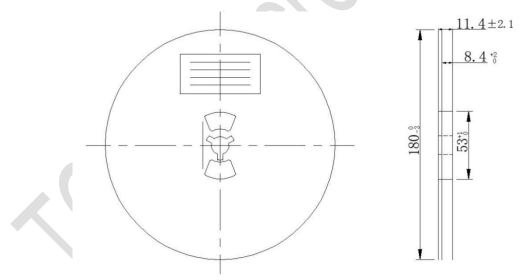
Field	Bit	R/W	Default	Description
PGOOD	7	R	0	1: Buck is enabled and soft-start is completed.
reserved	6:0	R	000000	Always reads back 0

PACKAGE INFORMATION

WLCSP-20



Note:


- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS: WLCSP-20

REEL DIMENSIONS:

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.

Important Notification

This document only provides product information. TOLL Microelectronic Inc. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

TOLL Microelectronic Inc. cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TOLL product. No circuit patent licenses are implied.

All rights are reserved by TOLL Microelectronic Inc. http:// www.toll-semi.com