

Radial Leaded PTC Resettable Fuse: FRHV Series

1. Summary

(a) RoHS Compliant (Lead Free) Product

(b) Applications: Wide variety of electronic equipment

(c) Product Features: Low hold current Solid state, Radial leaded product ideal for up to 60V/100V/250V/600V

(d) Operation Current: 0.08A~0.40A

(e) Maximum Operation Voltage: 60V/100V/250VDC

(f) Maximum Interrupt Voltage: 250V/600VAC

(g) Temperature Range: -40°C to 85°C

2. Agency Recognition

UL: File No. E211981 C-UL: File No. E211981 TÜV: *File No. R50138901

3. Electrical Characteristics (23°C)

Part Number	Hold Current	Trip Current	Max. Time To Trip		Max. Current	Max. Oper. Voltage	Max. Int. Voltage	Typ. Power	Resistance	
									RMIN	R1MAX
			Current	Time						
	IH, A	IT, A	Α	Sec	IMAX, A	VMAX, VDC	VI-MAX,VAC	Pd, W	Ohms	Ohms
FRH080-250VF	0.08	0.16	0.35	4.0	3.0	100	250	1.0	14.00	33.00
FRH110-250VF	0.11	0.22	1.00	2.0	3.0	100	250	1.0	5.00	16.00
FRH120-250VF	0.12	0.24	1.00	2.0	3.0	100	250	1.0	4.00	16.00
FRH145-250VF	0.15	0.29	1.00	2.5	3.0	100	250	1.0	3.00	12.00
FRH180-250XF	0.18	0.65	3.00	2.0	10.0	100	250	1.0	0.80	4.00
FRH150-600MF	0.15	0.30	1.00	4.0	3.0	250	600	1.0	6.00	17.00
FRH160-600MF	0.16	0.32	1.00	7.0	3.0	250	600	1.0	4.00	16.00
FRH160-600VF	0.16	0.32	1.00	7.0	3.0	250	600	1.0	4.00	18.00
FRH200-600VF	0.20	0.40	1.00	12.0	3.0	250	600	1.0	4.00	13.50
FRH250-600VF	0.25	0.85	3.00	1.0	3.0	250	600	1.0	1.00	7.00
FRH400-600F	0.40	1.00	3.00	4.0	3.0	60	600	1.0	0.95	1.90

Iн=Hold current-maximum current at which the device will not trip at 23℃ still air.

I_T=Trip current-maximum current at which the device will always trip at 23°C still air.

R_{MIN}=Minimum device resistance at 23°C

R1_MAX=Maximum device resistance at 23 $^{\circ}\mathbb{C}$ 1 hour after tripping .

Physical specifications:

Lead material: Tin plated copper, 22 AWG. Soldering characteristics:MIL-STD-202, Method 208E.

Insulating coating:Flame retardant epoxy ,meet UL-94V-0 requirement.

CAUTION: FRHV devices are not intended for continous use of Line Voltage such as 120VAC ~ 600VAC and above.

^{*}FRH160-600MF and FRH200-600VF~FRH400-600F TÜV In Process.

V_{MAX}=Maximum operating voltage at which the device can withstand without damage at its rated current. V_{I-MAX} = Maximum interrupt voltage device can withstand for short period of time. (Not for long term.)

I MAX= Maximum fault current device can withstand without damage at rated voltage (V MAX).

Pd=Typical power dissipated from device when in the tripped state in 23°C still air environment.

^{*}NOTE : All FRHV products are designed to assist equipment to pass ITU, UL60950 or GR1089 specification.

^{*}FRH150-600MF, FRH160-600VF meet UL497A Overvoltage and Endurance Conditioning requirements for Thermistor type component.

4. Production Dimensions (millimeter)

Ф	0.65 m	m Diameter	Φ 0.65 mm Diameter				
Part	- •	Α	В	С	D	E Maximum	
Number	Fig	Maximum	Maximum	Typical	Minimum		
FRH080-250VF	1	5.8	9.6	5.0	4.7	4.6	
FRH110-250VF	1	6.8	9.9	5.0	4.7	4.6	
FRH120-250VF	2	6.5	11.0	5.0	4.7	4.6	
FRH145-250VF	2	6.5	11.0	5.0	4.7	4.6	
FRH180-250XF	1	9.0	12.0	5.0	4.7	3.8	
FRH150-600MF	2	9.0	12.5	5.0	4.7	4.6	
FRH160-600MF	2	9.0	12.5	5.0	4.7	4.6	
FRH160-600VF	2	16.0	12.6	5.0	4.7	6.0	
FRH200-600VF	2	12.0	14.0	5.0	4.7	6.0	
FRH250-600VF	2	12.0	15.0	5.0	4.7	6.0	
FRH400-600F	2	15.0	14.5	5.0	4.7	6.0	

FUZETEC TECHNOLOGY CO., LTD.	NO.	PQ33-101E			
Product Specification and Approval Sheet	Version	A5	Page	3/4	

5. Thermal Derating Curve

A= FRH180-250XF B= All other FRHV devices

6. Typical Time-To-Trip at 23℃

A= FRH080-250VF B= FRH110-250VF C= FRH120-250VF D= FRH145-250VF E= FRH180-250XF

FUZETEC TECHNOLOGY CO., LTD.	NO.	PQ33-101E		
Product Specification and Approval Sheet	Version	A5	Page	4/4

F = FRH150-600MF G = FRH160-600MF H = FRH160-600VF I = FRH200-600VF J = FRH250-600VF K = FRH400-600F

7. Material Specification

Lead material: Tin plated copper, 22 AWG.

Soldering characteristics:MIL-STD-202, Method 208E.

Insulating coating:Flame retardant epoxy, meets UL-94V-0 requirement

8. Part Numbering and Marking System

Part Numbering System

Part Marking System

- * FRH150-600MF Marking: RH6150F, FRH160-600MF Marking: RH6160F, FRH160-600VF Marking: RH6160F
- * FRH200-600VF Marking: RH6200F, FRH250-600VF Marking: RH6250F, FRH400-600F Marking: RH6400F

Note: Font on Marking may look slightly different due to fine turnings of each Marking printer.

Warning: - Each product should be carefully evaluated and tested for their suitability of application. ₽

- Operation beyond the specified maximum rating or improper use may result in damage and possible electrical arcing and/or flame.
- PPTC device are intended for occasional overcurrent protection. Application for repeated overcurrent condition and/or prolonged trip are not anticipated.

 ✓
- Avoid contact of PPTC device with chemical solvent, including some inert material such as silicone based oil, lubricant and etc. Prolonged contact will damage the device performance.
- Additional protection mechanism are strongly recommended to be used in conjunction with the PPTC device for protection against abnormal or failure conditions.
- Avoid use of PPTC device in a constrained space such as potting material, housing and containers where have limited space to accommodate device thermal expansion and/or contraction.