

Low Profile and High Efficiency 915 MHz ISM Band Loop Antenna

Part No: ILA.01

Description

915 MHz ISM Band Loop Antenna

Features:

Small size antenna, low profile, and high efficiency 915 MHz ISM Band Dimensions: 10 x 3.2 x 0.5 mm SMT Compatible

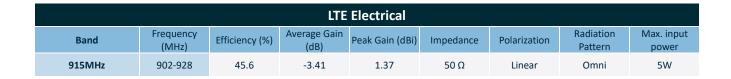
1.	Introduction	3
2.	Specification	4
3.	Mechanical Drawing	5
4.	Antenna Integration Guide	6
5.	Packaging	14
6.	Antenna Characteristics	16
7.	Radiation Patterns	20
	Changelog	22

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

The ILA.01 is a 915 MHz ISM band antenna with excellent efficiency, 60% at the center frequency and 35% at the band edges. This antenna works the best when placed at the center of the board edge. The antenna, at $10 \times 3.2 \times 0.5$ mm, is low profile and would be suitable for devices with space constraints. The ILA.01 is delivered on tape and reel and now allows M2M customers to use an omni-directional SMT antenna. The omni-directional radiation characteristics allow for excellent performance regardless of device orientation. This is especially useful for devices that are not fixed in one particular spot during use. When there is little PCB space available for antenna placement, but high performance is required, the ILA.01 is the ideal choice.

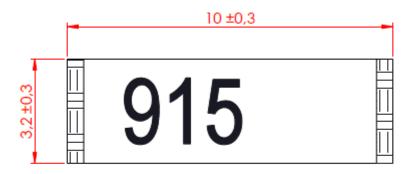
This antenna can be mounted with no performance degradation in either orientation as long as the antenna is soldered correctly via Surface mounting. Please see the integration instructions section for further detail regarding the optimum way to integrate this antenna into your device."

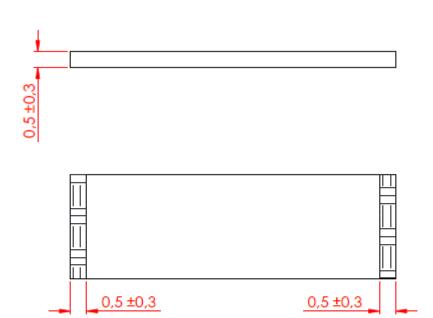

For further optimization to customer-specific device environments and for support to integrate and test this antennas performance in your device, contact your regional Taoglas Customer Services Team.

Applications:

- Automated Meter Reading (AMR)
- Radio Frequency Identification (RFID)
- Remote Monitoring
- Healthcare
- Sensing
- 915 MHz Applications

2. Specification




Mechanical		
Dimensions (mm)	10 x 3.2 x 0.5	
Required Space (mm)	11 x 10.4	
Material	Ceramic	
EVB Connector	SMA(F)	

Environmental		
Temperature Range	-40°C to 85°C	
Storage Temperature	-40°C to 105°C	
Humidity	40% to 95%	
Moisture Sensitivity Level	3 (168 Hours)	

3. Mechanical Drawing

4. Antenna Integration Guide

The following is an example on how to integrate the ILA.01 into a design. This antenna has 3 pins, where one pin is used for the RF Feed. Taoglas recommends using a minimum of 80x40mm ground plane (PCB) to ensure optimal performance.

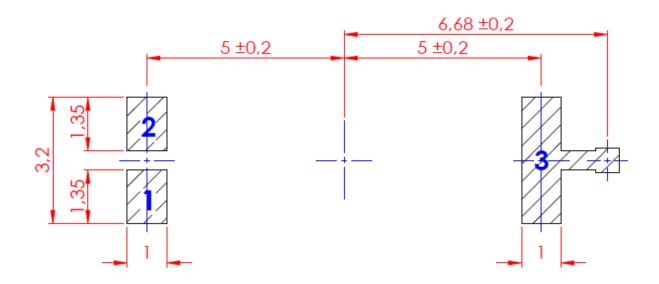
The antenna should be placed mid-point on the long side of the PCB to take advantage of the ground plane on each side of the antenna.

Top view of PCB.

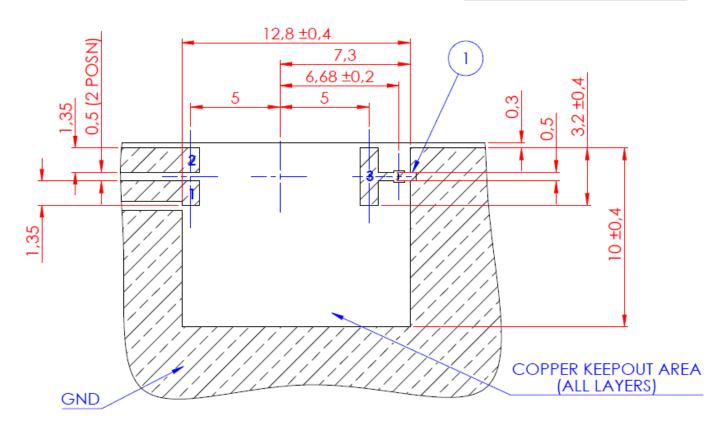
Please find the Integration files in Altium, 2D formats and the 3D model for the ILA.01 here: https://www.taoglas.com/product/ila-01-915mhz-ceramic-loop-antenna/



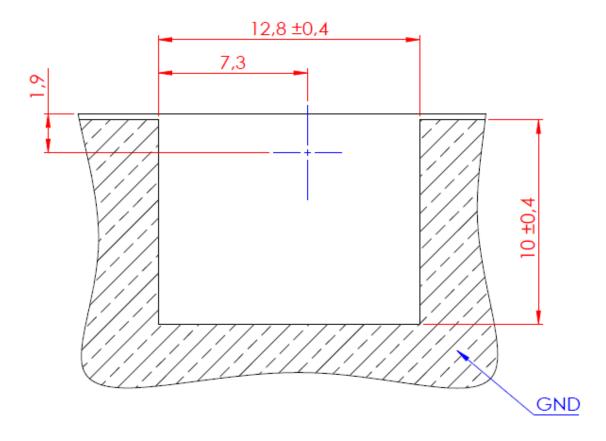
4.1 Schematic Symbol and Pin Definitions


Above is a 3D model of the ILA.01 on a PCB.

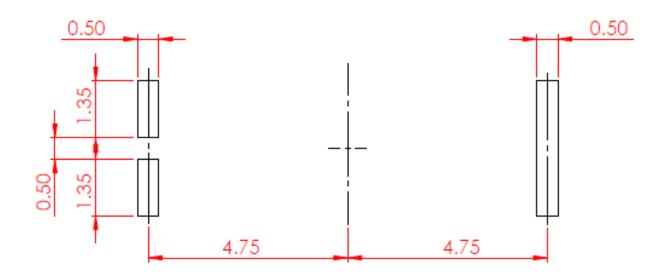
Pin	Description	
1	RF Feed	
2	GND	
3	FTE	

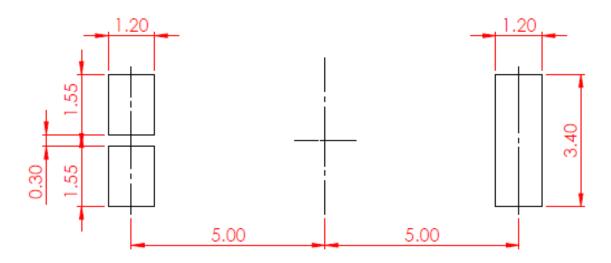


4.2 Antenna Copper Footprint

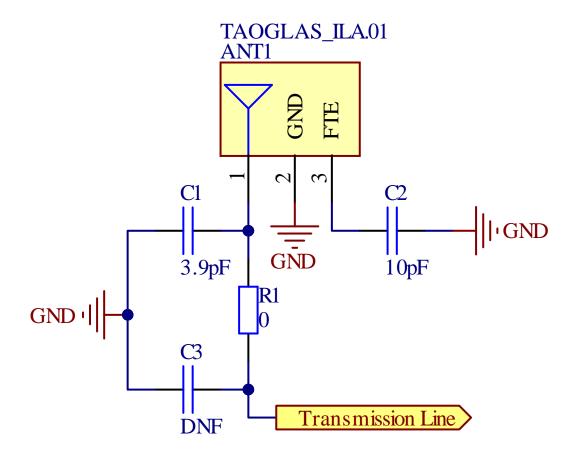

4.3 Ground Clearance Top View

ITEM NO.	<u>DESCRIPTION</u>	QTY
1	CAPACITOR 10 pF (0402)	1



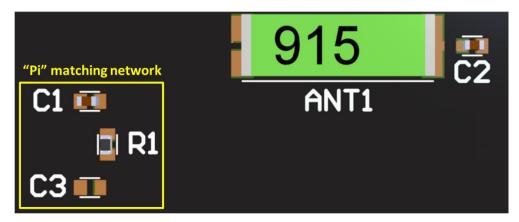

4.4 Ground Clearance Bottom View

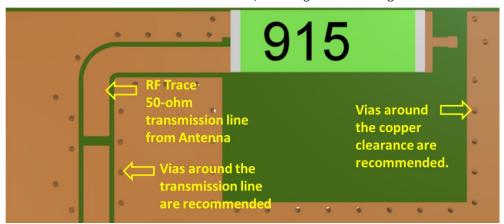
4.5 Top Solder Paste


4.6

4.7 Schematic Layout

Matching components with the ILA.01 are required for the antenna to have optimal performance in the spaces specified in the schematic below. Additional matching components may be necessary for your device, Taoglas recommends incorporating extra component footprints, forming a "pi" network, for the ILA.01.


Designator	Туре	Value	Manufacturer	Manufacturer Part Number
C1	Capacitor	3.9 pF	Murata	GRM1555C1H3R9CA01D
C2	Capacitor	10 pF	Murata	GRM1555C1H100JA01D
C3	Capacitor	Not Fitted	-	-
R1	Resistor	0 Ohm	YAGEO	RC0402JR-070RL


4.8 Antenna Integration

The ILA.01 should be placed mid-point on the long side of the PCB to take advantage of the ground plane extending from each side of the antenna.

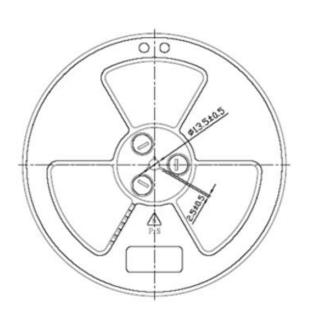
The RF trace must maintain a 50 Ohm transmission line. A "Pi" Matching Network is recommended for the RF transmission line, the values and components for the matching circuit will depend on the tuning needed. Ground vias should be placed around the transmission line and the copper clearance area.

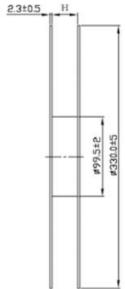
ILA.01 antenna mounted on a PCB, showing "Pi" matching network.

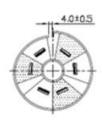
ILA.01 antenna mounted on a PCB, showing transmission line and integration notes.

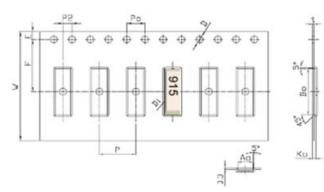
4.9 Final Integration

The top side image shown below highlights the antenna transmission line. Taoglas recommends using a minimum of 80x40mm ground plane (PCB) to ensure optimal performance.




Bottom Side (80x40mm PCB)



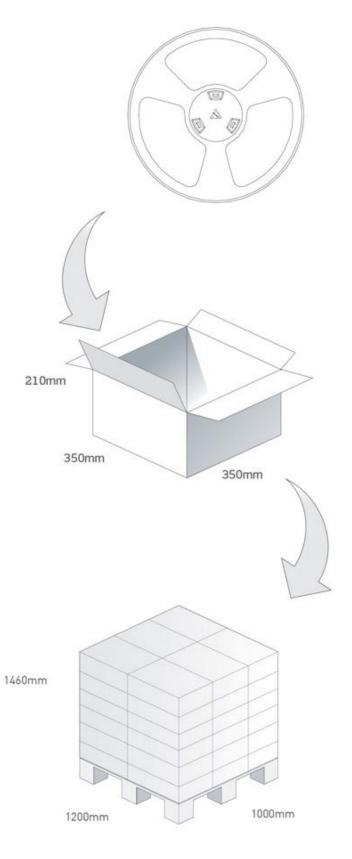

5. Packaging

6000pcs ILA.001 per reel Dimensions – 420*380mm Weight – 1050g

Tape Dimensions(unit: mm)

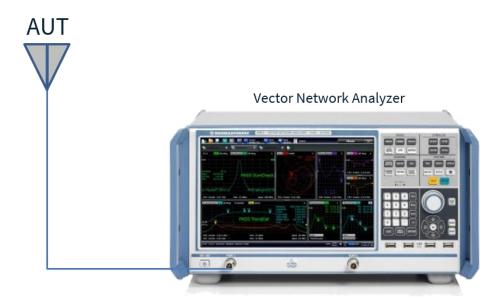
Feature	Specifications	Tolerances
W	24.00	±0.30
P	8.00	±0.10
E	1.75	±0.10
F	11.50	±0.10
P2	2.00	±0.10
D	1.50	+0.10 0.00
D1	1.50	±0.10
Po	4.00	±0.10
10Po	40.00	±0.20

Pocket Dimensions(unit: mm)


Feature	Specifications	Tolerances
Ao	3.40	±0.10
Во	10.20	±0.10
Ko	0.70	±0.10
t	0.30	±0.05

6000Pcs ILA.001 Per Reel Dimensions – 420*380mm Weight – 1050g

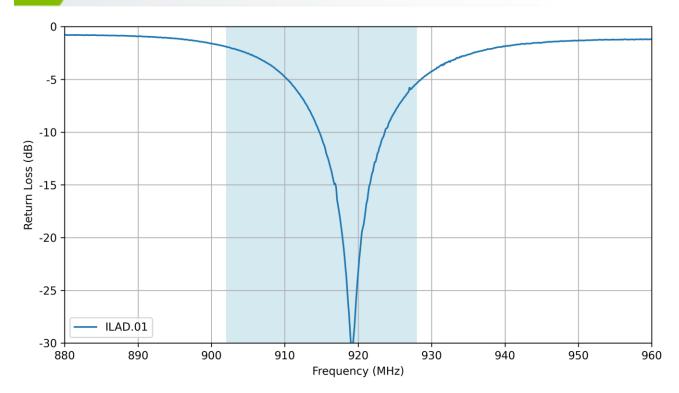
6 Reels, 36000 Pcs In One Carton Carton Dimensions – 350*350*210mm Weight – 7.1Kg

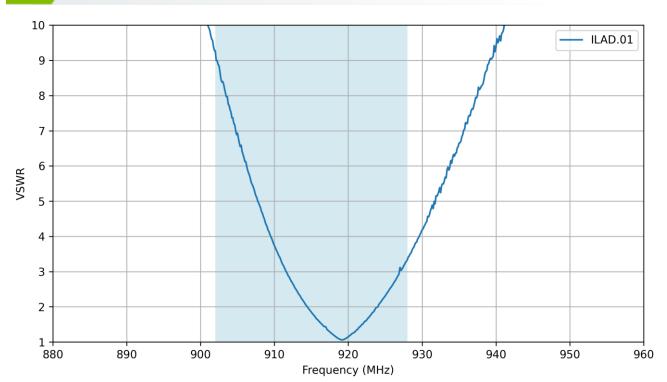

Pallet Dimensions 1200*1000*1460mm 36 Cartons Per Pallet 6 Cartons Per Layer 6 Layers



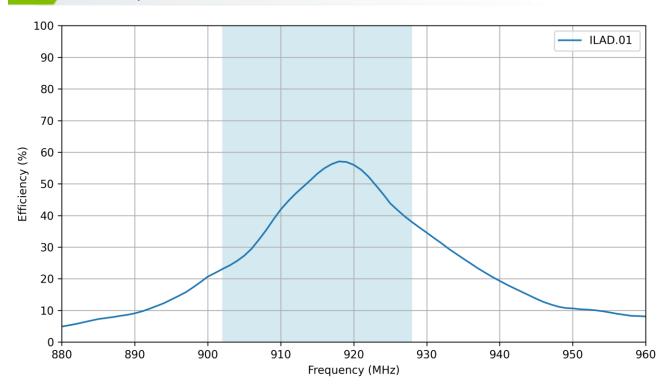
6. Antenna Characteristics

6.1 Test Setup

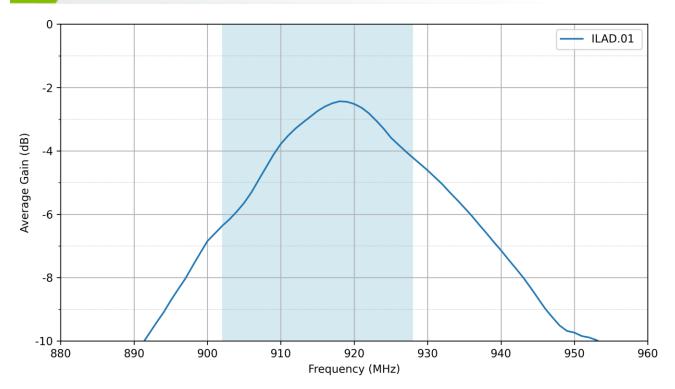



VNA Test Set-up

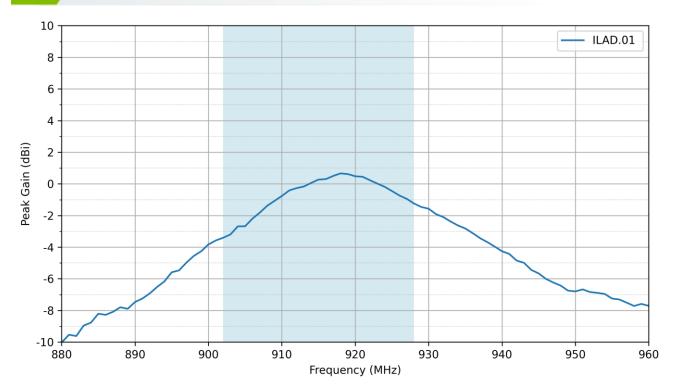
6.2 Return Loss



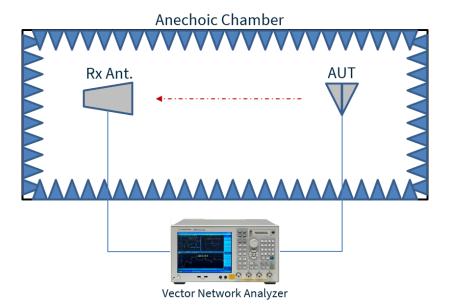
6.3 VSWR

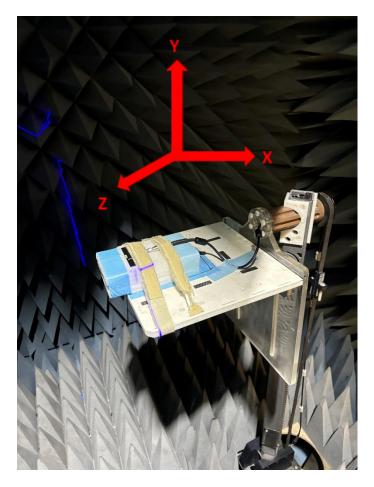


6.4 Efficiency



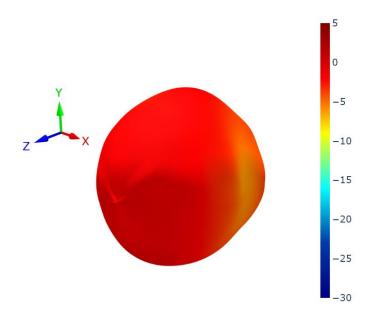
6.5 Average Gain

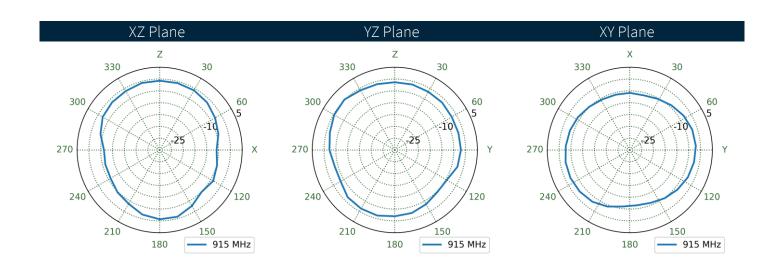

6.6 Peak Gain



7. Radiation Patterns

7.1 Test Setup





Chamber Test Set-up

7.2 Patterns at 915 MHz

Changelog for the datasheet

SPE-12-8-079 - ILA.01

Revision:K (Current Version)		
Date:	2024-08-29	
Changes:	Updated antenna integration guide.	
Changes Made by:	Gary West	

Previous Revisions

Revision: J		
Date:	2023-09-05	
Changes:	Updated solder reflow information	
Changes Made by:	Cesar Sousa	

Revision: E		
Date:	2017-04-21	
Changes:		
Changes Made by:	Technical Writer	

Revision: I		
Date:	2023-01-17	
Changes:	Updated product image	
Changes Made by:	Cesar Sousa	

Revision: D		
Date:	2016-09-12	
Changes:		
Changes Made by:	Technical Writer	

Revision: H	
Date:	2022-06-23
Changes:	Updated antenna integration guide, radiation patterns and graphs
Changes Made by:	Evan Murphy

Revision: C		
Date:	2014-08-19	
Changes:	EVB & Footprint	
Changes Made by:	Aine Doyle	

Revision: G	
Date:	2021-10-28
Changes:	Format Change, MSL
Changes Made by:	Erik Landi

Revision: B	
Date:	2012-06-27
Changes:	
Changes Made by:	Technical Writer

Revision: F	
Date:	2017-10-23
Changes:	Packing drawing updated
Changes Made by:	Carol Faughnan

Revision: A (Original First Release)	
Date:	2012-05-08
Notes:	Initial Release
Author:	Technical Writer

www.taoglas.com

