SuperMOS – SOT-23 100V BV_{DSS}, 90m Ω R_{DS(ON)}, N-channel MOSFET

1. Description

The 5N10S is N-Channel enhancement MOS Field Effect Transistor. Uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. Device is suitable for use in DC-DC conversion, power switch and charging circuit. Standard Product 5N10S is Pb-free.

2. Features

- 100V, R_{DS(ON)}=90mΩ(TYP.) @V_{GS}=10V R_{DS(ON)}=120mΩ(TYP.) @V_{GS}=4.5V
- Use trench MOSFET technology
- High density cell design for low R_{DS(on)}
- Material: Halogen free
- Reliable and rugged
- Avalanche Rated
- Low leakage current

3. Applications

- PWM applications
- Load switch

- Power management in portable/desktop PCs
- DC/DC conversion

4. Ordering Information

Part Number	Package	Marking	Material	Packing	Quantity per reel	Flammability Rating	Reel Size
5N10S	SOT-23	ES5N10	Halogen free	Tape & Reel	3,000 PCS	UL 94V-0	7 inches

5. Pin Configuration and Functions

Pin	Function	Outline	Circuit Diagram	
1	Gate	3	ο D1	
2	Source	ES5N10		
3	Drain		G1 O S1	

6. Specification

Absolute Maximum Rating & Thermal Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified.

Parameter		Symbol	Limit	Unit
Drain-Source Voltage	BV _{DSS}	100	V	
Gate-Source Voltage	V _{GS}	±20	V	
Continuous Drain Current	T _A =25°C		2.6	А
	T _A =75°C	I _D	2	A
Maximum Power Dissipation	PD	1.4	W	
Pulsed Drain Current ^A	I _{DM}	10.4	А	
Operating Junction Temperature	TJ	150	°C	
Lead Temperature	TL	260	°C	
Storage Temperature Range	T _{stg}	-55 to 150	°C	

Thermal resistance ratings

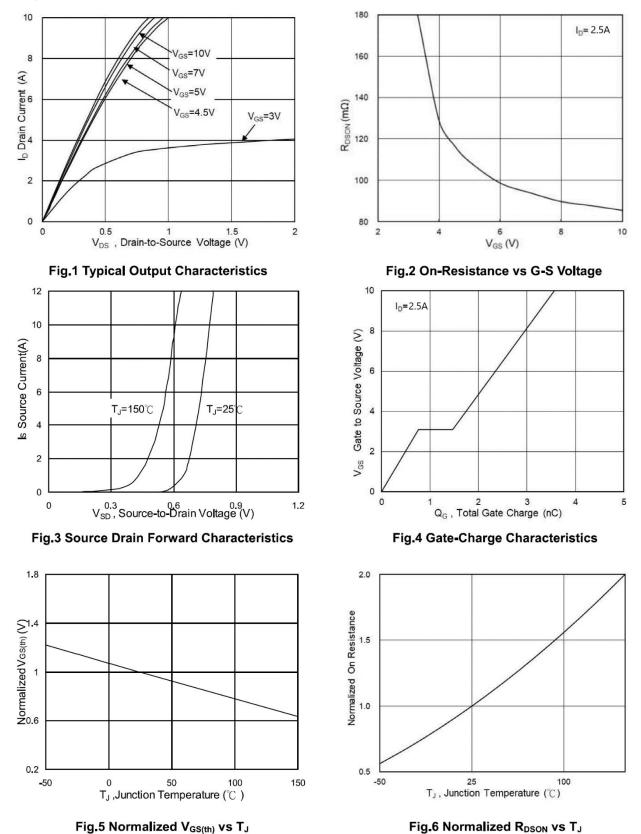
Single Operation						
Parameter	Symbol	Typical	Maximum	Unit		
Junction-to-Ambient Thermal Resistance ^B	R _{θJA}		90	°C/W		

Note:

A. Pulse Test: Pulse Width ${\leqslant}300 \text{us},$ Duty cycle ${\leqslant}2\%.$

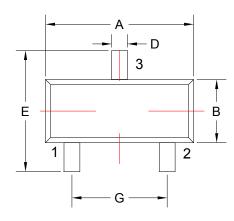
B. Device mounted on FR-4 PCB, 1 inch x 0.85inch x 0.062 inch.

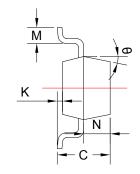
www.elecsuper.com

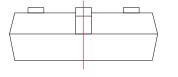

Electrical Characteristics

At TA = 25° C unless otherwise specified

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
	OFF CHA	ARACTERISTICS					
Drain-to-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	100			V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V			1	uA	
Gate-to-source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA	
	ON CHA	RACTERISTICS					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS}, I_D=250uA$ 1.		1.65	2.5	V	
Ducin to accuracy On respiratory of	D	V _{GS} =10V, I _D =2.5A		90	135		
Drain-to-source On-resistance	R _{DS(on)}	V _{GS} =4.5V, I _D =2A		120	195	mΩ	
CHARGES,	CAPACITAN	NCES AND GATE RESIST	ANCE				
Input Capacitance	C _{ISS}			206		pF	
Output Capacitance	C _{OSS}	V _{GS} =0V, f=1MHz, V _{DS} =25V		29			
Reverse Transfer Capacitance	C _{RSS}	VDS-20V		1.4			
Total Gate Charge	Q _{G(TOT)}			4.2		nC	
Gate-to-Source Charge	Q _{GS}	V _{GS} =10V, V _{DS} =25V, I _D =2.5A		1.5			
Gate-to-Drain Charge	Q _{GD}	10-2.37		1.1			
S	WITCHING	CHARACTERISTICS	-				
Turn-On Delay Time	t _{d(ON)}			14.7		- ns	
Rise Time	tr	V _{GS} =10V, V _{DS} =25V,		3.5			
Turn-Off Delay Time	t _{d(OFF)}	$I_D=2.5A, R_G=2\Omega$		20.9			
Fall Time	t _f			2.7			
B	ODY DIODE	CHARACTERISTICS					
Forward Voltage	V _{SD}	V _{GS} =0V, I _S =1.0A		0.8	1.5	V	




7. Typical Characteristic



8. Dimension (SOT-23)

COMMON DIMENSIONS CUNITS MEASURE=MILLIMETER							
SYMBOL	MIN	MAX	SYMBOL	MIN	MAX		
A	2.85	3.04	G	1.80	2.00		
В	1.20	1.40	K	0	0.10		
С	0.90	1.10	М	0.20	-		
D	0.40	0.50	N	0.50	0.70		
E	2.25	2.55	θ	5°	9°		

ElecSuper

DISCLAIMER

ELECSUPER PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with ElecSuper products. You are solely responsible for

(1) selecting the appropriate ElecSuper products for your application;

(2) designing, validating and testing your application;

(3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. ElecSuper grants you permission to use these resources only for development of an application that uses the ElecSuper products described in the resource. Other reproduction and display of these resources are prohibited. No license is granted to any other ElecSuper intellectual property right or to any third party intellectual property right. ElecSuper disclaims responsibility for, and you will fully indemnify ElecSuper and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. ElecSuper's products are provided subject to ElecSuper's Terms of Sale or other applicable terms available either on www.elecsuper.com or provided in conjunction with such ElecSuper products. ElecSuper's provision of these resources does not expand or otherwise alter ElecSuper's applicable warranties or warranty disclaimers for ElecSuper products.

