RS485通信接口芯片

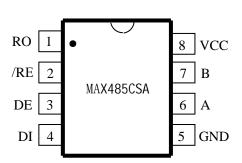
MAX485CSA

»产品概述

MAX485CSA是一款应用于RS485和RS 422通信系统的收发器芯片,传输和接 收数据的传输速率可达2.5Mbps。

MAX485CSA是半双工通信的RS485接口芯片,有驱动使能(DE)和接收使能/RE控制引脚。

MAX485CSA的接收器设计为1/4单位 负载输入阻抗,总线上可以挂接128个 负载。


»产品特点

- 三态输出
- 半双工通信
- 静电保护(ESD): 接触放电: ±5KV 空气放电: ±5KV(HBM)
- A、B 端短路保护
- SOP8封装

»产品应用

- 低功耗 RS485&RS422 接收器
- 电表、水表、燃气表
- 电平转换
- 门禁、安防系统
- 防电磁干扰(EMI)的收发器
- 工控局域网

»产品封装

»订购信息

型号	封装	最小包装	温度范围
MAX485CSA	SOP8	2500/盘	0°C85°C

MAX485CSA RS485通信接口芯片

»引脚功能描述

引脚	引脚定义	功能描述
1	RO	接收器输出: 当 /RE 为低电平时, 若(A - B) ≥ 200mV, 则RO
		输出为高电平; 若(A - B) ≤ -200mV, 则RO输出为低电平。
2	/RE	接收器使能控制: /RE为低电平时接收器功能有效; /RE为高电平时接
		收器功能禁止。
3	DE	发送器是能控制: DE 为高电平时发送器功能有效; DE为低电平时发
		送器功能禁止
4	DI	发送器输入: 当 DE为高电平, DI 输入为低电平时, A 输出低电
		平, B输出高电平; 相反DI 输入为高电平时, A 输出高电平, B输出
		地电平
5	GND	接地
6	А	接收器同相输入和发送器反向输出
7	В	接收器反相输入和发送器反向输出
8	VCC	电源引脚: 一般接5V电源

»绝对值参数

名称	信号参数	范围	单位
电源电压	Vcc	-0.3 to 7.0	V
控制输入信号电压	/RE, DE	-0.3 to (Vcc+ 0.3)	V
接收器输入信号电压	A, B	±13	V
接收器输出电压	RO	-0.3 to (Vcc+ 0.3)	V
发送器输出电压	A, B	±13	V
发送器输入电压	DI	-0.3 to (Vcc+ 0.3)	V
工作温度	T _{OP}	-40 to +85	°C
储存温度	T _{STO}	-65 to +150	O°

》推荐工作条件

名称	信号参数	最小	典型 最大	单位
电源电压	Vcc	3	5.5	V
控制输入信号高电压	/RE, DE,DI	2		V
控制输入信号低电压	/RE, DE,DI		0.8	V
接收器输入信号电压	A, B		±12	V
工作温度		-40 to	+85	°C

地址:深圳市福田区滨河大道联合广场B座4B层

RS485通信接口芯片

»直流电气特性

MAX485CSA

(注释: 若无另外说明, VCC=5V, TA=25oC

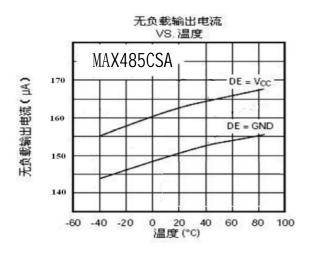
参数	名称	测试条件	+	最小	典型	最大	单位
发送器							
差分信号输出	V _{OD1}	无负载				5	V
差分信号输出	V _{OD2}	Fig.1, R _L = 27	Ω	1.5			V
差分信号输出变化幅度	$\Delta V_{\sf OD}$	Fig.1, R _L = 27	Ω			0.2	V
共模输出电压	V _{OC}	Fig.1, R _L = 27	Ω			3	V
共模电压输出变化幅度	ΔV_{OC}	Fig.1, R _L = 27	Ω			0.2	V
输入信号高电平	V _{IH}	DE, DI, REB		2.0			V
输入信号低电平	V _{IL}	DE, DI, REB				8.0	V
控制引脚输入电流	I _{IN1}	BE=B!\REBo\	/			± 2	μA
	I _{IN2}	or 5.25V	V _{IN} =12V			1.0	mA
A/B引脚输入电流			V _{IN} =-7V			-0.8	
输出短路电流	I _{OSD}	-7∨ ≤ V _{OUT} :	≤ 12V	-250		250	mA
接收器							
接收器差分信号阈值电压	V_{TH}			-200		200	mV
接收器输入迟滞	Δ V _{TH}				30		mV
接收器输出高电平	V _{OH}	Io= -4mA, VID	= 200mV	Vcc-1.5			V
接收器输出低电平	V _{OL}	Io= 4mA, VID:	= -200mV			0.4	V
接收器三态输出电流	I _{OZR}	$0.4V \leq V_{CM}$	≤ 2.4V			±1	μA
接收器输入阻抗	R _{IN}	-7V ≤ V _{CM} ≤ +12V		32			kΩ
接收器短路电流	I _{OSR}	Fig. 6, $0V \le V_{RO} \le V_{CC}$		±7		±95	m A
供电电流					•	'	
供电电流	Icc	无负载, /RE=GND,	DE= Vcc		155	900	μΑ
N. 9. (1) (1)		DI=Vcc or GND.	DE= GND		160	600	μA

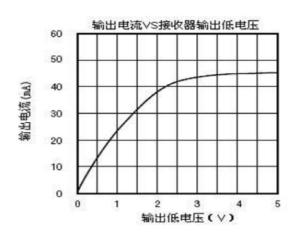
注释: 1、进入器件的电流为正,流出器件的电流为负

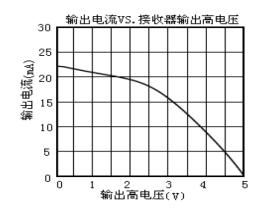
RS485通信接口芯片

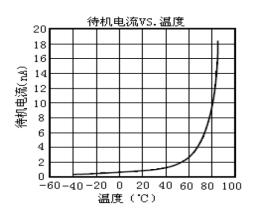
»交流电气特性

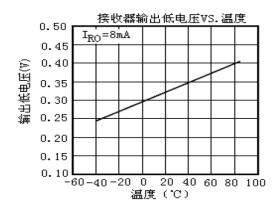
(注释: 若无另外说明, VCC=5V, TA=25oC

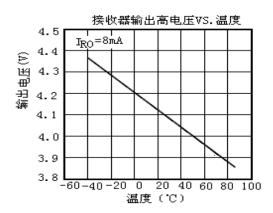

参数	名称	测试条件	最小	典型	最大	单位
驱动器输入到输出 t_{DPLH} $-t_{DH}$	t _{DSKEW}	图5和7, R _{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF			100	ns
驱动器上升或下降时间	t _{DF} , t _{DR}	图5和7, R _{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF	200	530	750	ns
传输 速率	f _{Data}				2.5	Mbps
驱动器使能到输出低	t _{DZL}	图6和8, C _{DL} = 100pF, S1 关 闭			2500	ns
驱动器使能到输出高	t _{DZH}	图6和8, C _{DL} = 100pF, S2 关 闭			2500	ns
从低到驱动器无效	t _{DLZ}	图6和8, C _{DL} = 15pF, S1 关 闭			100	ns
从高到驱动器无效	t _{DHZ}	图6和8, C _{DL} = 15pF, S2 关 闭			100	ns
接收器输入到输出	t _{RPLH} , t _{RPHL}	图9和11, V _{II} ≥ 2.0V; V _{ID} ≤ 15ns的上升和下降 时间		120	200	ns
$t_{\!R\!P\!L\!H}\!\!-\!t_{\!R\!P\!H}$	t _{RSKD}	图9和11, V_{ID} $\stackrel{\checkmark}{=}$ 2.0V; $V_{ID} \stackrel{\leq}{=}$ 15ns 的上升和下降 时间		5	30	ns
接收器使能到输出低	t _{RZL}	图4和10, C _{RL} = 15pF, S1 关 闭		20	50	ns
接收器使能到输出高	t _{RZH}	图4和10, C _{RL} = 15pF, S2 关 闭		20	50	ns
接收器从低到无效时间	t _{RLZ}	图4和10, C _{RL} = 15pF, S1 关 闭		20	50	ns
接收器从高到无效时间	t _{RHZ}	图4和10, C _{RL} = 15pF, S2 关 闭		20	50	ns

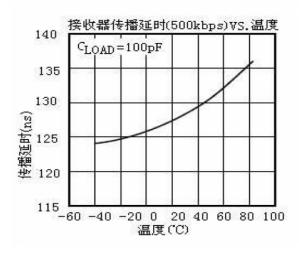


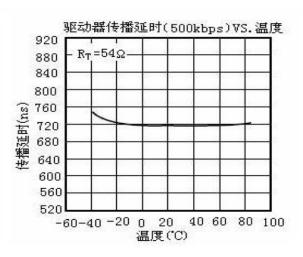

MAX485CSA

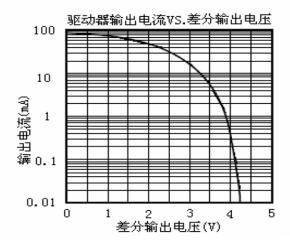

RS485通信接口芯片

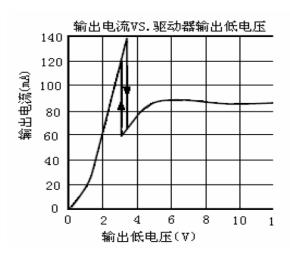

»典型工作特性

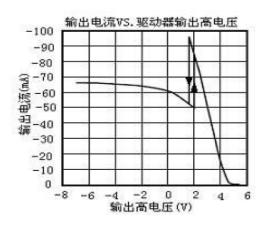


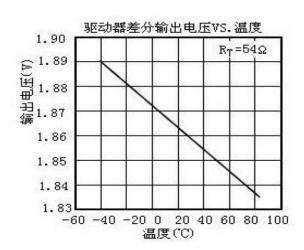







MAX485CSA


RS485通信接口芯片



RS485通信接口芯片

»功能表

MAX485CSA

TRANSMITTING						
INPUTS OUTPUTS						
/RE	DE	DI	Α	В		
X	1	0	0	1		
X	1	1	1	0		
X	0	X	高阻	高阻		

RECEIVING					
	OUTPUTS				
/RE	DE	A - B	RO		
0	0	≥ 0.2V	1		
0	0	≤-0.2V	0		
0	0	Open/Shorted	不确定状态		
1	0	X	高阻.		

X=任意状态

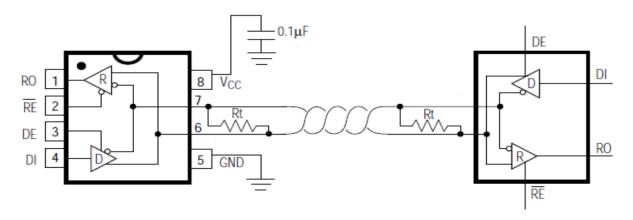


图1: MAX485CSA典型半双工应用电路

1.简述

用于 RS485/RS422 通信的MAX485CSA高速收发器包含一个驱动器和接收器。MAX485CSA具有低摆率驱动器,能够减小 EMI 和由于不恰电缆端接所引起的反射,实现高达 2.5Mbps 的数据传输。

2.接收器输入滤波

MAX485CSA的接收器出来具有输入滞后外,还包括输入滤波功能。此滤波功能提高了上升和下降缓慢的差分信号的噪声抑制能力。滤波器使接收器传输延时增加25%。

地址:深圳市福田区滨河大道联合广场B座4B层

RS485通信接口芯片

3.失效保护的应用

MAX485CSA内部没有失效保护电路,需要注意的是当A/B端的差分信号介于0. 2V和-0. 2V之间时(-200mV \leqslant A-B \leqslant 200mV),接收器的输出状态不确定。在接收器输入开路时(RS485总线空闲时),需要在A口加上拉电阻来确保接收器 RO为高电平。

4.总线上挂接 128 个收发器

MAX485CSA收发器的接收端具有 1/8 单位负载输入阻抗 (128ΚΩ), 允许 128 个收发器并行挂接在 同一通信总线上。

5.降低 EMI 和反射

MAX485CSA的低摆率驱动器可以减小EMI,并降低由不恰当的终端匹配电缆引起的反射,图 11显示了高频谐波元件在幅度上要低于一般情况,驱动器上升沿的时间与终端的长度有关,下面的 方程式表示其关系: Length=t RISE/(10 x 1.5ns/ft) t RISE 是驱动器上升沿的时间。

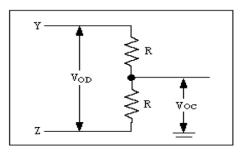


图 2:驱动器 DC 测试负载

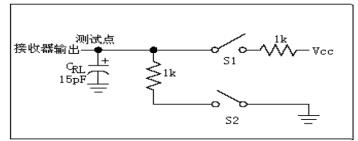


图 3:接收器使能/无效定时测试负载

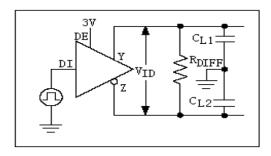


图 4:驱动器定时测试负载

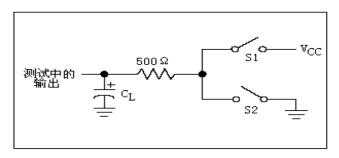


图 5:驱动器使能/无效定时测试负载

MAX485CSA

深圳市英锐芯科技有限公司

RS485通信接口芯片

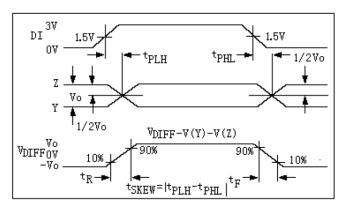


图 6:驱动器传播延时

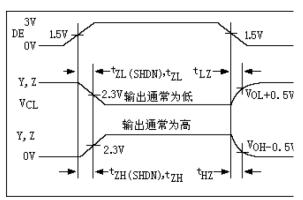


图 7:驱动器使能和无效时间

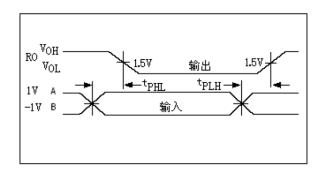


图 8:接收器传播延时

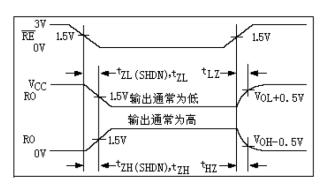


图 9:接收器使能和无效时间

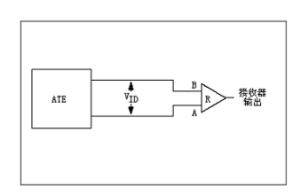


图 10:接收器传播延时测试电路

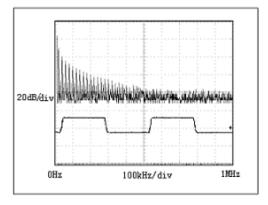


图 11: 传输 20kHz 信号时 MAX485CSA 驱动器输出波形 和 FFT 图

地址:深圳市福田区滨河大道联合广场B座4B层

RS485通信接口芯片

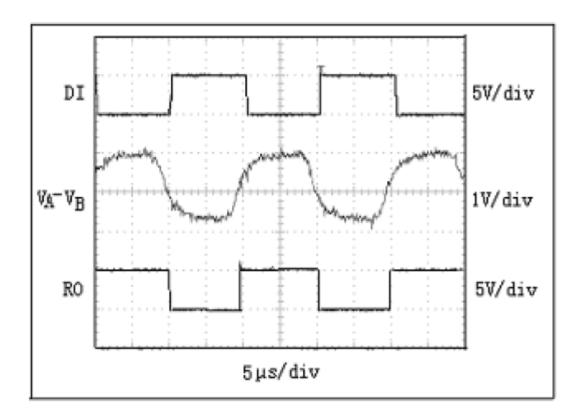


图 12:在 50kHz 时驱动 4000 英尺的电缆

MAX485CSA 系统差分电压线性转发器

6.驱动器输出保护

通过两种机制避免故障或总线冲突引起输出电流过大和功耗过高。第一,输出级折返式限流,在整个 共模电压范围(参考典型工作特性)内提供快速短路保护。第二,热关断电路,当管芯温度超过典型值时,强制驱动器输出进入高阻状态。

RS485通信接口芯片

7.典型应用

收发器设计用于多点总线传输线上的双向数据通信。图 13 显示了典型的网络应用电路。这些器件也能用作电缆长于 4000 英尺的线性转发器,如图 12。为减小反射,应当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支连线长度应尽可能短。

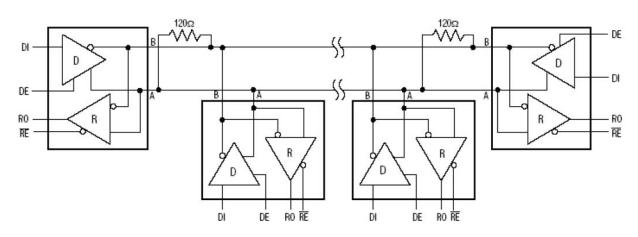


图13:典型半双工RS-485网络