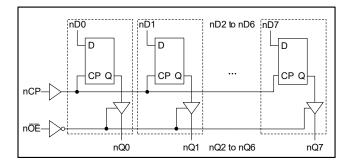


74LVTN16374 3.3V, 16-Bit D-Type Edge-Triggered Flip-Flop with 3-State Outputs


GENERAL DESCRIPTION

The 74LVTN16374 is a 16-bit high-performance D-type edge-triggered flip-flop with non-inverting 3-state outputs designed for $3.3V V_{CC}$ operation. The device can be used for driving loads with high capacitance or relatively low-impedance, making it suitable for applications in buffer registers, I/O ports, bidirectional bus drivers and working registers.

The device can be operated as two 8-bit flip-flops or one 16-bit flip-flop. For flip-flop, when the clock input nCP is on the Low-to-High clock transition, the nQn outputs will follow logic levels of the nDn inputs.

The output enable $n\overline{OE}$ input can make all outputs in high/low logic levels or high-impedance state, which has no influence on the inner working of the flip-flop. When the outputs are in high-impedance state, the flip-flop can retain old data or enter new data.

LOGIC DIAGRAM

FEATURES

- Wide Operating Voltage Range: 2.7V to 3.6V
- Input and Output Interface Capability to 5V System Environment
- +64mA/-32mA Output Current
- 16-Bit Positive Edge-Triggered Flip-Flop
- 3-State Buffers
- Input and Output Switching Levels of TTL
- Power-Up Reset
- Power-Up 3-State
- No Bus Current Load when Output is Connected to 5V Bus
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

FUNCTION TABLE

CO	NTROL IN	PUT	INTERNAL	OUTPUT
nOE	nCP	nDn	FLIP-FLOPS	nQn
L	1	I	L	L
L	1	h	Н	Н
L	NC	X	NC	NC
Н	NC	X	NC	Z
Н	Ť	nDn	nDn	Z

H = High Voltage Level

h = High Voltage Level One Setup Time before Clock Rising Edge \uparrow

L = Low Voltage Level

I = Low Voltage Level One Setup Time before Clock Rising Edge ↑

Z = High-Impedance State

↑ = Low-to-High Clock Transition

NC = No Change

X = Don't Care

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
74LVTN16374	TSSOP-48	-40°C to +125°C	74LVTN16374XTS48G/TR	74LVTN16374 XTS48 XXXXX	Tape and Reel, 2500	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXX

- Vendor Code
- Trace Code
 - Date Code Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage Range, V _{CC}	0.5V to 4.6V
Input Voltage Range, V ₁ ⁽²⁾	0.5V to 7.0V
Output Voltage Range, V _O ⁽²⁾	
3-State or High-State	0.5V to 7.0V
Input Clamping Current, I _{IK} (V _I < 0V)	50mA
Output Clamping Current, I _{OK} (V _O < 0V)	50mA
Output Current, I _O	
High-State	64mA
Low-State	128mA
Supply Current, I _{CC}	128mA
Ground Current, I _{GND}	
Junction Temperature ⁽³⁾	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	2.7V to 3.6V
Input Voltage Range, V _I	0V to 5.5V
High-Level Output Current, IOH	32mA
Low-Level Output Current, IoL	64mA
Input Transition Rise or Fall Rate, $\Delta t / \Delta V \dots$	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

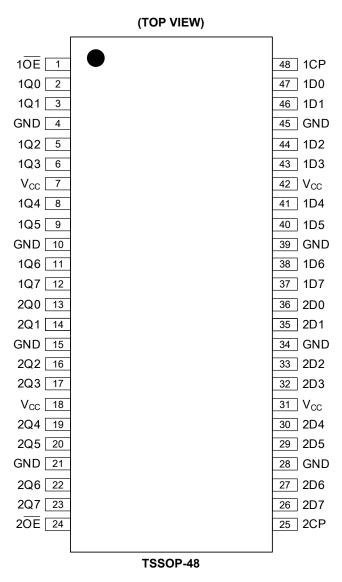
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

3.3V, 16-Bit D-Type Edge-Triggered Flip-Flop with 3-State Outputs

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37	1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7	Data Inputs.
36, 35, 33, 32, 30, 29, 27, 26	2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7	Data Inputs.
1, 24	10E, 20E	Output Enable Inputs (Active-Low).
48, 25	1CP, 2CP	Clock Inputs (Low-to-High Clock Transition, Edge-Triggered).
2, 3, 5, 6, 8, 9, 11, 12	1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7	Data Outputs.
13, 14, 16, 17, 19, 20, 22, 23	2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7	Data Outputs.
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.
7, 18, 31, 42	V _{cc}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	IONS	TEMP	MIN	TYP	MAX	UNITS	
Input Clamping Voltage	VIK	V _{CC} = 2.7V, I _{IK} = -18mA	V _{CC} = 2.7V, I _{IK} = -18mA					V	
High-Level Input Voltage	V _{IH}	V _{CC} = 2.7V to 3.6V		Full	2.0			V	
Low-Level Input Voltage	VIL	V _{CC} = 2.7V to 3.6V		Full			0.8	V	
		$V_{\rm CC}$ = 2.7V to 3.6V, $I_{\rm OH}$ =	Full	V _{CC} - 0.05	V _{CC} - 0.001				
High-Level Output Voltage	V _{он}	V _{CC} = 2.7V, I _{OH} = -8mA		Full	2.45	2.60		V	
		V _{CC} = 3.0V, I _{OH} = -32mA		Full	2.10	2.65			
		V _{CC} = 2.7V, I _{OL} = 100µA		Full		0.001	0.05		
		V _{CC} = 2.7V, I _{OL} = 24mA		Full		0.15	0.28	-	
Low-Level Output Voltage	Vol	V _{CC} = 3.0V, I _{OL} = 16mA		Full		0.1	0.18	V	
		V _{CC} = 3.0V, I _{OL} = 32mA		Full		0.2	0.36		
		$V_{\rm CC} = 3.0V, I_{\rm OL} = 64mA$				0.4	0.55		
Power-Up Low-Level Output Voltage ⁽¹⁾	$V_{\text{OL}_{\text{PU}}}$	V_{CC} = 3.6V, I_{OL} = 1mA, V_{I}	Full		5	50	mV		
		Control pins, V_{CC} = 3.6V, V_I = V_{CC} or GND				±0.01	±1		
	I,	Control pins, V_{CC} = 0V or 3.6V, V_{I} = 5.5V				0.01	5		
Input Leakage Current		Input data pins $^{(2)}$, V_{CC} = 0V or 3.6V, V_{I} = 5.5V				0.01	5	μA	
		Input data pins $^{(2)}$, V _{CC} = 3.6V, V _I = V _{CC}				0.01	1		
		Input data pins ⁽²⁾ , V _{CC} = 3.6V, V _I = GND			-2	-0.01			
Off Chata Output Output		V _{CC} = 3.6V, V _O = 3.0V		Full		0.01	2		
Off-State Output Current	loz	V _{CC} = 3.6V, V _O = 0.5V		Full	-2	-0.01		μA	
Output Leakage Current	ILO	Outputs in high-state when $V_{CC} = 3.0V$, $V_{O} = 5.5V$		Full		1	30	μA	
Power-Up/Down Output Current	I _{O_PU/PD}	$V_{CC} \le 1.2V$, $V_0 = 0.5V$ to ' nOE = don't care	V_{CC} , V_{I} = GND or V_{CC} ,	+25°C		0.01	10	μA	
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_I or $V_O = 0V$ to	o 5.5V	Full		0.01	10	μA	
		$V_{\rm CC} = 3.6V_{\rm V}$	Outputs high	Full		12	80		
Supply Current	I _{CC}	$V_1 = GND \text{ or } V_{CC},$	Outputs low	Full		12	80	μA	
		$I_{O} = 0A$	Outputs disabled ⁽³⁾	Full		12	80		
Additional Supply Current (4)	ΔI_{CC}	Per input pin, V_{CC} = 3.0V to 3.6V, one input at V_{CC} - 0.6V, other inputs at V_{CC} or GND		Full		0.2	80	μA	
Input Capacitance	Cı	Input pins, $V_1 = 0V$ or 3.0		+25°C		6		pF	
Output Capacitance	Co	Output pins nQn, outputs $V_0 = 0V$ or V_{CC}	disabled,	+25°C		9		pF	

NOTES:

1. When power is applied, data cannot be loaded into the flips-flops (or latches) to get the valuable test results.

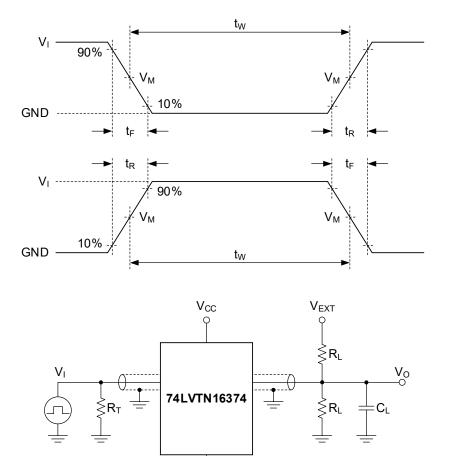
2. Other pins must be tied to V_{CC} or GND and should not be floating.

3. I_{CC} is measured with outputs pulled to V_{CC} or GND.

4. It is the increase in supply current for per input at the specified voltage level except Vcc or GND.

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIO	ONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS	
Maximum Frequency	f _{MAX}	nCP, see Figure 2	$V_{CC} = 3.3V \pm 0.3V$	Full	150			MHz	
Low-to-High Propagation Delay	+	nCP to nQn, see Figure 2	$V_{CC} = 3.3V \pm 0.3V$	Full	0.5	3.4	7.5	ns	
Low-to-high Propagation Delay	t _{PLH}	THEF TO HEIL, SEE FIGURE 2	V _{CC} = 2.7V	Full		3.9	8.8	115	
High-to-Low Propagation Delay	+	nCP to nQn, see Figure 2	V_{CC} = 3.3V ± 0.3V	Full	0.5	3.3	5.8	ns	
	t _{PHL}		V _{CC} = 2.7V	Full		3.5	6.0	115	
Off-to-High Propagation Delay	+		V_{CC} = 3.3V ± 0.3V	Full	0.5	4.3	7.8	ns	
Oll-to-high Propagation Delay	t _{PZH}	nOE to nQn, see Figure 3	V _{CC} = 2.7V	Full		3.9	9.4	115	
Off-to-Low Propagation Delay	+		V_{CC} = 3.3V ± 0.3V	Full	0.5	4.4	6.2	ns	
	t _{PZL}	nOE to nQn, see Figure 3	V _{CC} = 2.7V	Full		4.3	6.5		
	t _{PHZ}	$n\overline{OE}$ to nQn, see Figure 3	V_{CC} = 3.3V ± 0.3V	Full	0.5	4.5	7.0	ns	
High-to-Off Propagation Delay			V _{CC} = 2.7V	Full		4.0	7.6		
Low to Off Propagation Dalay		$n\overline{OE}$ to nQn, see Figure 3	V_{CC} = 3.3V ± 0.3V	Full	0.5	3.8	6.5		
Low-to-Off Propagation Delay	t _{PLZ}		V _{CC} = 2.7V	Full		3.4	6.8	ns	
Cotup Time	+	nDn to nCP, high or low,	V_{CC} = 3.3V ± 0.3V	Full	2.0	0.3			
Setup Time	t _{s∪}	see Figure 4	V _{CC} = 2.7V	Full	2.0	0.3		ns	
Hold Time		nDn to nCP, high or low,	V_{CC} = 3.3V ± 0.3V	Full	1.2	0.2			
	t _H	see Figure 4	V _{CC} = 2.7V	Full	1.2	0.2		ns	
		nCD high and Figure 2	$V_{CC} = 3.3V \pm 0.3V$	Full	3.3	1.5			
Dulas Width		nCP high, see Figure 2	V _{CC} = 2.7V	Full	3.3	1.5		ns	
Pulse Width	tw		$V_{CC} = 3.3V \pm 0.3V$	Full	3.3	1.5			
		nCP low, see Figure 2	V _{CC} = 2.7V	Full	3.3	1.5		1	

NOTE:

1. Specified by design and characterization, not production tested.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

RL: Load resistance.

C_L: Load capacitance (includes jig and probe).

R_T: Termination resistance (equals to output impedance Z₀ of the pulse generator).

V_{EXT}: External voltage is used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

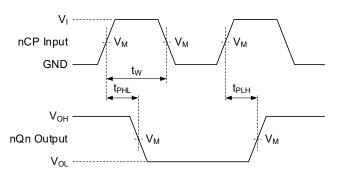
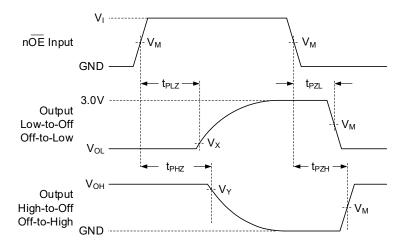

_

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT			LOAD		V _{EXT}			
V _{cc}	VI	fi	tw	t _R , t _F	CL	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7V to 3.6V	2.7V	≤ 10MHz	500ns	≤ 2.5ns	50pF	500Ω	GND	6V	Open

WAVEFORMS

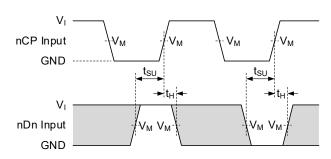


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Clock Input to Output Propagation Delays, Clock Pulse Width and Maximum Clock Frequency



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas refer to when the input is allowed to change for predictable output performance.

Figure 4. Data Setup and Hold Times

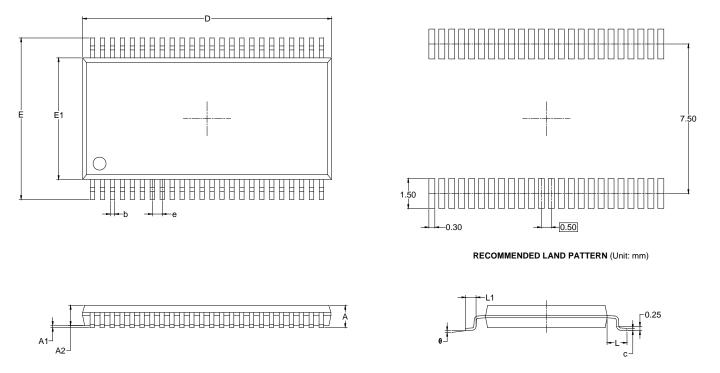
WAVEFORMS (continued)

Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TUT	OUTPUT				
Vcc	V ₁ V _M ⁽¹⁾		V _M	Vx	V _Y		
2.7V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V		

NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.


REVISION HISTORY

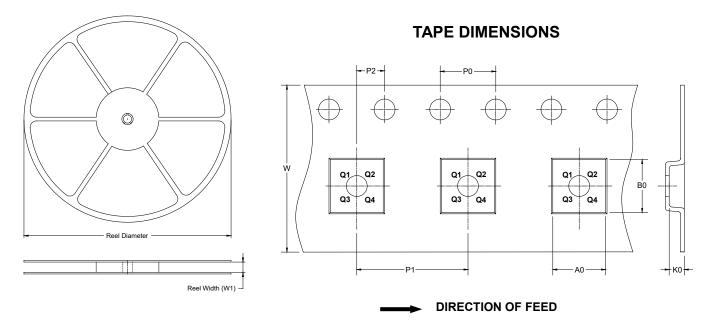
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2024 – REV.A.1 to REV.A.2	Page
Updated Dynamic Characteristics section	5
NOVEMBER 2021 – REV.A to REV.A.1	Page
Updated HBM value in Absolute Maximum Ratings section	2
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TSSOP-48

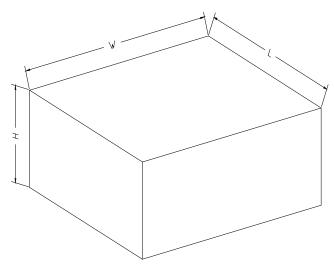
Sympol	D	imensions In Millime	ters		
Symbol	MIN	MOD	MAX		
A			1.20		
A1	0.05	0.10	0.15		
A2	0.85	0.95 1.0			
b	0.18		0.26		
С	0.15		0.19		
D	12.40	12.50	12.60		
E	7.90	8.10	8.30		
E1	6.00	6.10	6.20		
е		0.50 BSC			
L		1.00 REF			
L1	0.45		0.75		
θ	0°		8°		


NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13"	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

