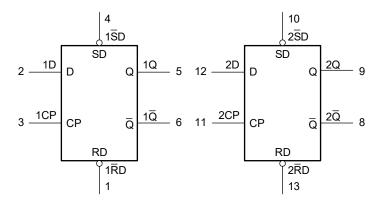


# 74LVC74 Dual D-Type Positive Edge-Triggered Flip-Flop with Set and Reset

### **GENERAL DESCRIPTION**

The 74LVC74 is a dual D-type flip-flop positive edge-triggered with set and reset functions. This device accepts a wide supply voltage range from 1.2V to 3.6V. nD are individual data inputs, nCP are clock inputs, n $\overline{SD}$  and  $n\overline{R}D$  are set and reset inputs, nQ and  $n\overline{Q}$  are complementary outputs.


The set and reset are non-synchronous inputs (active-low), and clock inputs can be operated independently. When clock pulse is in the transition of low-to-high, data at the nD inputs can be transmitted to the nQ outputs. For predictable outputs performance, prior setup time is required necessarily by nD inputs to the low-to-high clock transition.

Schmitt-trigger inputs feature the high tolerance of slower input rise and fall times. This device is suitable for down-translation in a mixed-voltage environment.

# **FEATURES**

- Wide Supply Voltage Range: 1.2V to 3.6V
- Inputs Accept Voltages up to 5V
- CMOS Low Power Dissipation
- Direct Interface with TTL Levels
- -40℃ to +125℃ Operating Temperature Range
- Available in a Green TSSOP-14 Package

# LOGIC DIAGRAM



| CONTROL INPUT |     |     | INPUT | OUT | PUT |
|---------------|-----|-----|-------|-----|-----|
| nSD           | nRD | nCP | nD    | nQ  | nQ  |
| L             | н   | Х   | X     | Н   | L   |
| Н             | L   | Х   | X     | L   | Н   |
| L             | L   | Х   | X     | Н   | Н   |

H = High Voltage Level

**FUNCTION TABLE** 

L = Low Voltage Level

X = Don't Care

| CONTROL INPUT |     |     | INPUT | OUTPUT            |                   |  |
|---------------|-----|-----|-------|-------------------|-------------------|--|
| nSD           | nRD | nCP | nD    | nQ <sub>n+1</sub> | nQ <sub>n+1</sub> |  |
| Н             | Н   | ↑   | L     | L                 | н                 |  |
| Н             | Н   | ↑   | Н     | н                 | L                 |  |

H = High Voltage Level

L = Low Voltage Level

↑ = Low-to-High Clock Transition

 $Q_{n+1}$  = State after the Next Low-to-High nCP Transition



# PACKAGE/ORDERING INFORMATION

| MODEL   | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING        | PACKING<br>OPTION   |
|---------|------------------------|-----------------------------------|--------------------|---------------------------|---------------------|
| 74LVC74 | TSSOP-14               | -40°C to +125°C                   | 74LVC74XTS14G/TR   | 74LVC74<br>XTS14<br>XXXXX | Tape and Reel, 4000 |

#### MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

- Vendor Code
- Trace Code
  - Date Code Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

### ABSOLUTE MAXIMUM RATINGS (1)

| Supply Voltage Range, V <sub>CC</sub>                                 | 0.5V to 6.5V                    |
|-----------------------------------------------------------------------|---------------------------------|
| Input Voltage Range, V <sub>1</sub> <sup>(2)</sup>                    | 0.5V to 6.5V                    |
| Output Voltage Range, Vo <sup>(2)</sup>                               | -0.5V to V <sub>CC</sub> + 0.5V |
| Input Clamping Current, I <sub>IK</sub> (V <sub>I</sub> < 0V)         | 50mA                            |
| Output Clamping Current, $I_{OK}$ (V <sub>O</sub> > V <sub>CC</sub> o | r V <sub>O</sub> < 0V) ±50mA    |
| Output Current, $I_O (V_O = 0V \text{ to } V_{CC})$                   | ±50mA                           |
| Supply Current, I <sub>CC</sub>                                       | 100mA                           |
| Ground Current, I <sub>GND</sub>                                      | 100mA                           |
| Junction Temperature <sup>(3)</sup>                                   | +150°C                          |
| Storage Temperature Range                                             | 65°C to +150°C                  |
| Lead Temperature (Soldering, 10s)                                     | +260°C                          |
| ESD Susceptibility                                                    |                                 |
| HBM                                                                   | 6000V                           |
| CDM                                                                   |                                 |

#### **RECOMMENDED OPERATING CONDITIONS**

| Supply Voltage Range, V <sub>CC</sub>                     | 1.65V to 3.6V         |
|-----------------------------------------------------------|-----------------------|
| Data Retention Only, Vcc                                  | 1.2V to 3.6V          |
| Input Voltage Range, V <sub>1</sub>                       | 0V to 5.5V            |
| Output Voltage Range, Vo                                  | 0V to V <sub>CC</sub> |
| Input Transition Rise or Fall Rate, $\Delta t / \Delta V$ |                       |
| V <sub>CC</sub> = 1.65V to 2.7V                           | 20ns/V (MAX)          |
| V <sub>CC</sub> = 2.7V to 3.6V                            | 10ns/V (MAX)          |
| Operating Temperature Range                               | 40°C to +125°C        |

#### **OVERSTRESS CAUTION**

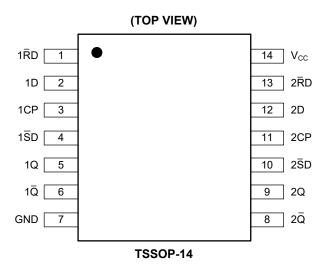
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.



# 74LVC74

# **PIN CONFIGURATION**



# PIN DESCRIPTION

| PIN   | NAME            | FUNCTION                                                     |
|-------|-----------------|--------------------------------------------------------------|
| 1, 13 | 1RD, 2RD        | Non-Synchronous Reset-Direct Inputs (Active-Low).            |
| 2, 12 | 1D, 2D          | Data Inputs.                                                 |
| 3, 11 | 1CP, 2CP        | Clock Inputs (Low-to-High Clock Transition, Edge-Triggered). |
| 4, 10 | 1SD, 2SD        | Non-Synchronous Set-Direct Inputs (Active-Low).              |
| 5, 9  | 1Q, 2Q          | Outputs.                                                     |
| 6, 8  | 1Q, 2Q          | Complementary Outputs.                                       |
| 7     | GND             | Ground.                                                      |
| 14    | V <sub>CC</sub> | Supply Voltage.                                              |



# **ELECTRICAL CHARACTERISTICS**

(Full = -40°C to +125°C, all typical values are measured at  $V_{CC}$  = 3.3V and  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                 | SYMBOL           |                                                        | CONDITIONS                                                                  | TEMP                                         | MIN                    | TYP                    | MAX   | UNITS |  |
|---------------------------|------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|------------------------|------------------------|-------|-------|--|
|                           |                  | V <sub>CC</sub> = 1.2V                                 | V <sub>CC</sub> = 1.2V                                                      |                                              | 1.2                    |                        |       |       |  |
| High-Level Input Voltage  | V <sub>IH</sub>  | V <sub>CC</sub> = 1.8V                                 |                                                                             | Full                                         | 1.6                    |                        |       | V     |  |
|                           |                  | $V_{CC}$ = 2.7V to                                     | 93.6V                                                                       | Full                                         | 2.0                    |                        |       |       |  |
|                           |                  | V <sub>CC</sub> = 1.2V                                 |                                                                             | Full                                         |                        |                        | 0.1   |       |  |
| Low-Level Input Voltage   | VIL              | V <sub>CC</sub> = 1.8V                                 |                                                                             | Full                                         |                        |                        | 0.5   | V     |  |
|                           |                  | $V_{CC}$ = 2.7V to                                     | 93.6V                                                                       | Full                                         |                        |                        | 0.8   |       |  |
|                           | V <sub>он</sub>  |                                                        | $V_{CC}$ = 2.7V to 3.6V, $I_0$ = -100µA                                     | Full                                         | V <sub>CC</sub> - 0.05 | V <sub>cc</sub> -0.005 |       | v     |  |
|                           |                  | $V_{I} = V_{IH}$                                       | V <sub>CC</sub> = 2.7V, I <sub>O</sub> = -12mA                              | Full                                         | 2.35                   | 2.57                   |       |       |  |
| High-Level Output Voltage |                  |                                                        | V <sub>CC</sub> = 3.0V, I <sub>O</sub> = -18mA                              | Full                                         | 2.55                   | 2.82                   |       |       |  |
|                           |                  |                                                        | V <sub>CC</sub> = 3.0V, I <sub>O</sub> = -24mA                              | Full                                         | 2.45                   | 2.75                   |       |       |  |
|                           |                  |                                                        |                                                                             | $V_{CC}$ = 2.7V to 3.6V, $I_0$ = 100 $\mu$ A | Full                   |                        | 0.005 | 0.05  |  |
| Low-Level Output Voltage  | Vol              | $V_I = V_{IL}$                                         | V <sub>CC</sub> = 2.7V, I <sub>O</sub> = 12mA                               | Full                                         |                        | 0.12                   | 0.30  | V     |  |
|                           |                  |                                                        | V <sub>CC</sub> = 3.0V, I <sub>O</sub> = 24mA                               | Full                                         |                        | 0.23                   | 0.55  |       |  |
| Input Leakage Current     | I,               | V <sub>CC</sub> = 3.6V, V                              | V <sub>CC</sub> = 3.6V, V <sub>I</sub> = 5.5V or GND                        |                                              |                        | ±0.05                  | ±10   | μA    |  |
| Supply Current            | I <sub>cc</sub>  | $V_{CC} = 3.6V, V_I = V_{CC} \text{ or GND}, I_O = 0A$ |                                                                             | Full                                         |                        | 0.05                   | 20    | μA    |  |
| Additional Supply Current | ΔI <sub>CC</sub> | Per input pin<br>I <sub>0</sub> = 0A                   | Per input pin, $V_{CC}$ = 2.7V to 3.6V, $V_I$ = $V_{CC}$ - 0.6V, $I_0$ = 0A |                                              |                        | 0.1                    | 4000  | μA    |  |
| Input Capacitance         | Cı               | $V_{CC}$ = 0V to 3                                     | 8.6V, $V_1$ = GND to $V_{CC}$                                               | +25°C                                        |                        | 6                      |       | pF    |  |



# **DYNAMIC CHARACTERISTICS**

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at  $T_A$  = +25°C. For  $V_{CC}$  = 3.0V to 3.6V range, typical values are measured at 3.3V, unless otherwise noted.)

| PARAMETER                                       | SYMBOL             | CC                               | ONDITIONS                            | TEMP  | MIN <sup>(1)</sup> | TYP | MAX <sup>(1)</sup> | UNITS |
|-------------------------------------------------|--------------------|----------------------------------|--------------------------------------|-------|--------------------|-----|--------------------|-------|
|                                                 |                    | _                                | V <sub>CC</sub> = 1.2V               | +25°C |                    | 15  |                    |       |
|                                                 |                    | nCP to nQ, nQ,<br>see Figure 2   | V <sub>CC</sub> = 2.7V               | Full  | 1                  | 4   | 7                  |       |
|                                                 |                    | See Figure 2                     | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 1                  | 4   | 6.5                |       |
|                                                 |                    |                                  | V <sub>CC</sub> = 1.2V               | +25°C |                    | 16  |                    | 1     |
| Propagation Delay <sup>(2)</sup>                | t <sub>PD</sub>    | nSD to nQ, nQ,<br>see Figure 3   | V <sub>CC</sub> = 2.7V               | Full  | 1                  | 4   | 9                  | ns    |
|                                                 |                    | See Figure e                     | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 0.5                | 3.5 | 8                  |       |
|                                                 |                    |                                  | V <sub>CC</sub> = 1.2V               | +25°C |                    | 16  |                    | 1     |
|                                                 |                    | nRD to nQ, nQ,<br>see Figure 3   | V <sub>CC</sub> = 2.7V               | Full  | 1                  | 3.5 | 9                  | 1     |
|                                                 |                    | See Figure e                     | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 1                  | 3.5 | 8                  | 1     |
|                                                 |                    | nCP high or low,<br>see Figure 2 | V <sub>CC</sub> = 2.7V               | Full  | 4.5                |     |                    | ns    |
|                                                 |                    |                                  | V <sub>cc</sub> = 3.0V to 3.6V       | Full  | 4.5                | 2.5 |                    |       |
| Pulse Width                                     | t <sub>w</sub>     | nSD or nRD low,<br>see Figure 3  | V <sub>CC</sub> = 2.7V               | Full  | 4.5                |     |                    |       |
|                                                 |                    |                                  | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 4.5                | 2.5 |                    |       |
| Description                                     |                    | nSD or nRD,<br>see Figure 3      | V <sub>CC</sub> = 2.7V               | Full  | 2                  |     |                    | ns    |
| Recovery Time                                   | <b>I</b> REC       |                                  | V <sub>cc</sub> = 3.0V to 3.6V       | Full  | 2                  |     |                    |       |
| Catura Tirra                                    |                    | nD to nCP,                       | V <sub>CC</sub> = 2.7V               | Full  | 2                  |     |                    |       |
| Setup Time                                      | t <sub>su</sub>    | see Figure 2                     | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 2                  |     |                    | ns    |
| Lipid Time                                      |                    | nD to nCP,                       | V <sub>CC</sub> = 2.7V               | Full  | 2.5                |     |                    | - ns  |
| Hold Time                                       | t <sub>H</sub>     | see Figure 2                     | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 2.5                |     |                    |       |
|                                                 |                    |                                  | V <sub>cc</sub> = 1.65V to 1.95V     | Full  | 80                 |     |                    |       |
| Maximum Francisco au                            | 4                  |                                  | V <sub>CC</sub> = 2.3V to 2.7V       | Full  | 100                |     |                    | MHz   |
| Maximum Frequency                               | f <sub>MAX</sub>   | nCP, see Figure 2                | V <sub>CC</sub> = 2.7V               | Full  | 120                | 175 |                    |       |
|                                                 |                    |                                  | V <sub>CC</sub> = 3.0V to 3.6V       | Full  | 120                | 260 |                    | 1     |
| Output Skew Time                                | t <sub>SK(O)</sub> | V <sub>CC</sub> = 3.0V to 3.6V   | •                                    | Full  |                    |     | 1.5                | ns    |
| Power Dissipation<br>Capacitance <sup>(3)</sup> | C <sub>PD</sub>    | Per flip-flop, $V_{CC}$ = 3      | .0V to 3.6V, $V_I$ = GND to $V_{CC}$ | +25°C |                    | 15  |                    | pF    |

#### NOTES:

- 1. Specified by design and characterization, not production tested.
- 2.  $t_{\text{PD}}$  is the same as  $t_{\text{PLH}}$  and  $t_{\text{PHL}}.$

3.  $C_{\text{PD}}$  is used to determine the dynamic power dissipation (P\_D in  $\mu W).$ 

 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{PD}} \times \mathsf{V}_{\mathsf{CC}}^2 \times \mathsf{f}_{\mathsf{i}} \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{CC}}^2 \times \mathsf{f}_{\mathsf{o}})$ 

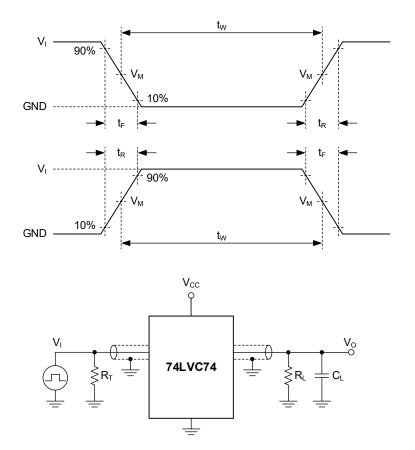
where:

 $f_i$  = input frequency in MHz.

 $f_o$  = output frequency in MHz.

 $C_L$  = output load capacitance in pF.

 $V_{CC}$  = supply voltage in Volts.


N = number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$  = sum of the outputs.



### 74LVC74

# **TEST CIRCUIT**



Test conditions are given in Table 1.

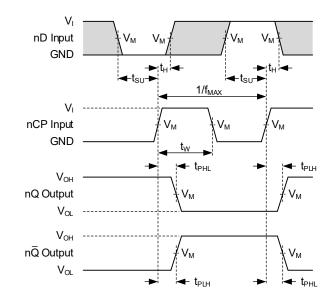
Definitions for test circuit:

 $R_L$ : Load resistance.

CL: Load capacitance (including jig and probe).

 $R_T$ : Termination resistance (equal to output impedance  $Z_0$  of the pulse generator).

#### Figure 1. Test Circuit for Measuring Switching Times


#### Table 1. Test Conditions

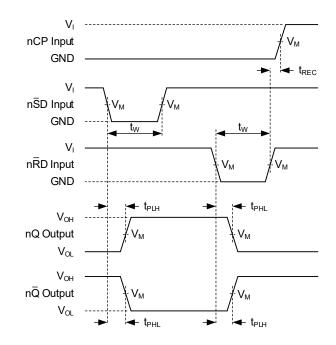
| SUPPLY VOLTAGE | /OLTAGE INPUT |                                 | LO   | AD   |
|----------------|---------------|---------------------------------|------|------|
| Vcc            | VI            | t <sub>R</sub> , t <sub>F</sub> | C∟   | RL   |
| 2.7V           | 2.7V          | ≤ 2.5ns                         | 50pF | 500Ω |
| 3.0V to 3.6V   | 2.7V          | ≤ 2.5ns                         | 50pF | 500Ω |



### 74LVC74

# WAVEFORMS




Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels:  $V_{OL}$  and  $V_{OH}$  are typical voltage output levels that occur with the output load.

The shaded areas refer to when the input is allowed to change for predictable output performance.

#### Figure 2. The Clock Input to Output Propagation Delays, Clock Pulse Width, the nD to nCP Setup, the nCP to nD Hold Times and the Maximum Frequency



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels:  $V_{OL}$  and  $V_{OH}$  are typical output voltage levels that occur with the output load.

# Figure 3. The Set (nSD) and Reset (nRD) Input to Output (nQ, nQ) Propagation Delays, Pulse Width and the nRD to nCP Recovery Time



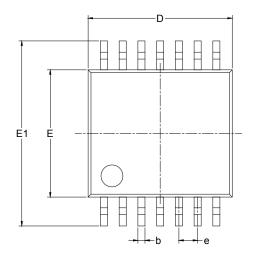
# WAVEFORMS (continued)

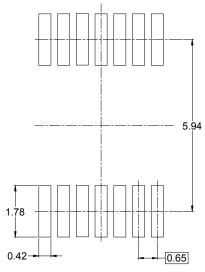
#### **Table 2. Measurement Points**

| SUPPLY VOLTAGE         | INPUT                         | OUTPUT                |
|------------------------|-------------------------------|-----------------------|
| Vcc                    | V <sub>M</sub> <sup>(1)</sup> | V <sub>M</sub>        |
| V <sub>CC</sub> ≥ 2.7V | 1.5V                          | 1.5V                  |
| V <sub>CC</sub> < 2.7V | 0.5 × V <sub>CC</sub>         | 0.5 × V <sub>CC</sub> |

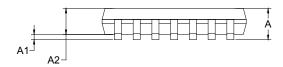
NOTE:

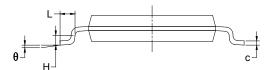
1. The measurement points should be  $V_{IH}$  or  $V_{IL}$  when the input rising or falling time exceeds 2.5ns.


### **REVISION HISTORY**


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| FEBRUARY 2024 – REV.A to REV.A.1                | Page |
|-------------------------------------------------|------|
| Updated Electrical Characteristics section      |      |
| Updated Dynamic Characteristics section         |      |
|                                                 |      |
| Changes from Original (APRIL 2021) to REV.A     | Page |
| Changed from product preview to production data |      |


# PACKAGE OUTLINE DIMENSIONS

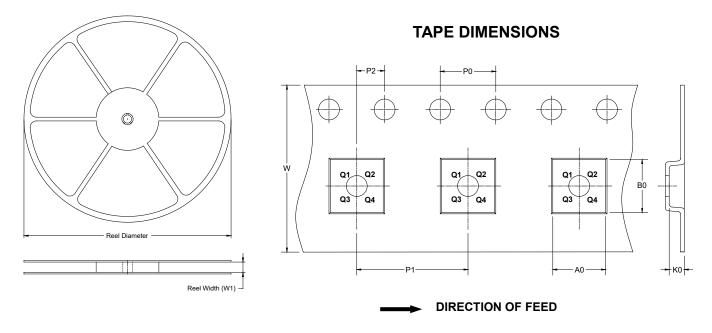

# **TSSOP-14**





RECOMMENDED LAND PATTERN (Unit: mm)



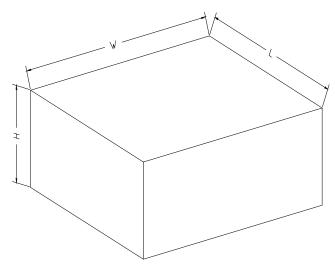



| Symbol | -         | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-----------|------------------|-------------------------|-------|--|
| ,      | MIN       | MAX              | MIN                     | MAX   |  |
| A      |           | 1.200            |                         | 0.047 |  |
| A1     | 0.050     | 0.150            | 0.002                   | 0.006 |  |
| A2     | 0.800     | 1.050            | 0.031                   | 0.041 |  |
| b      | 0.190     | 0.300            | 0.007                   | 0.012 |  |
| с      | 0.090     | 0.200            | 0.004                   | 0.008 |  |
| D      | 4.860     | 5.100            | 0.191                   | 0.201 |  |
| E      | 4.300     | 4.500            | 0.169                   | 0.177 |  |
| E1     | 6.250     | 6.550            | 0.246                   | 0.258 |  |
| е      | 0.650 BSC |                  | 0.026                   | BSC   |  |
| L      | 0.500     | 0.700            | 0.02                    | 0.028 |  |
| Н      | 0.25      | 5 TYP 0.01 TYP   |                         | TYP   |  |
| θ      | 1°        | 7°               | 1°                      | 7°    |  |



# TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

#### KEY PARAMETER LIST OF TAPE AND REEL

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TSSOP-14     | 13″              | 12.4                     | 6.80       | 5.40       | 1.50       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |

### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |

