EV1W0505B-LVH-00A

5V, 1W, Regulated, 2.5kV_{RMS}, Isolated DC/DC Module Evaluation Board

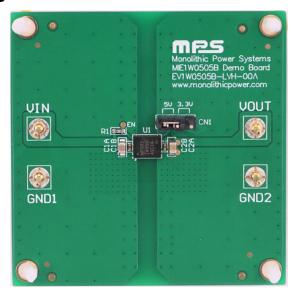
DESCRIPTION

The EV1W0505B-LVH-00A is an evaluation board designed to demonstrate the capabilities of the MIE1W0505BGLVH, an isolated, regulated, DC/DC module. The device supports 3V to 5.5V input voltage (V_{IN}) applications. In addition, the MIE1W0505BGLVH has excellent load regulation, line regulation, and supports up to 1W of output power (P_{OUT}).

The MIE1W0505BGLVH uses capacitive isolation technology for the feedback block, which can regulate output voltage (V_{OUT}) without traditional optocoupler and a precision-

configurable reference IC. The module is a small solution that provides highly reliable operation when compared to traditional isolation power modules.

The MIE1W0505BGLVH features continuous short-circuit protection (SCP) and over-temperature protection (OTP). It is available in a small LGA-12 (4mmx5mm) package.


It is recommended to read the datasheet for the MIE1W0505BGLVH prior to making any changes to the EV1W0505B-LVH-00A.

PERFORMANCE SUMMARY

Specifications are at $T_A = 25$ °C, unless otherwise noted.

Parameters	Conditions	Value
Input voltage (V _{IN}) range		4.5V to 5.5V
Output voltage (Vout)	I _{OUT} = 0A to 0.2A	5V
Maximum output current (Ιουτ)	V _{IN} = 4.5V to 5.5V	0.2A
Typical efficiency	$V_{IN} = 5V, V_{OUT} = 5V, I_{OUT} = 0.2A$	50.5%

EVALUATION BOARD

LxWxH (5.1cmx5.1cmx0.2cm)

Board Number	MPS IC Number	
EV1W0505B-LVH-00A	MIE1W0505BGLVH	

QUICK START GUIDE

This board's output voltage is set to 5V by default. To quick start the EV1W0505B-LVH-00A, refer to Figure 1 and follow the steps below:

- 1. Preset the power supply (V_{IN}) to be $4.5V \le V_{IN} \le 5.5V$.
- 2. Turn off the power supply.
- 3. Connect the power supply terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND1
- 4. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND2
- 5. After making the connections, turn on the power supply. The board should automatically start up.
- 6. To use the enable function, apply a digital input to the EN pin. Drive EN above 2V to turn on the EV1W0505B-LVH-00A; drive EN below 0.4V to turn it off.
- 7. Set the output voltage (V_{OUT}) to 3.3V.
- 8. Set the output voltage to 3.3V by moving the jumper from the 5V selection to the 3.3V selection on CN1. VIN should start up.

Figure 1 shows the measurement equipment set-up.

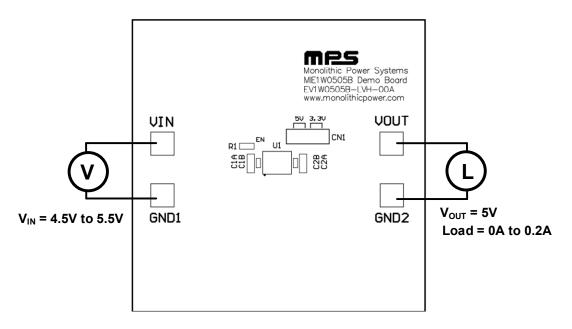


Figure 1: Measurement Equipment Set-Up

EVALUATION BOARD SCHEMATIC

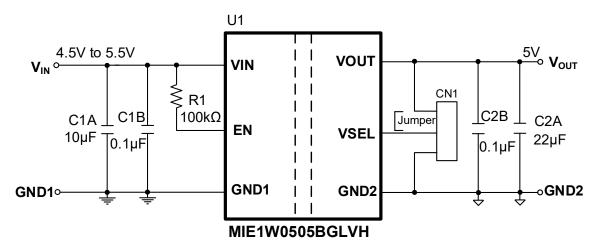
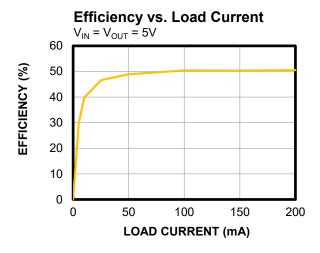
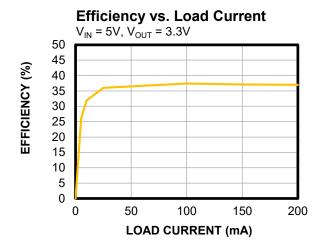
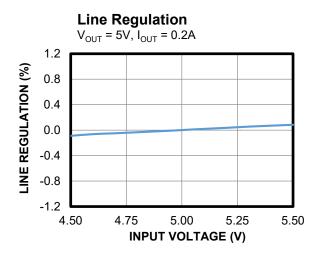
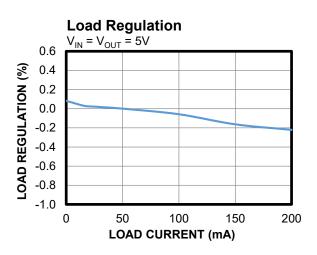


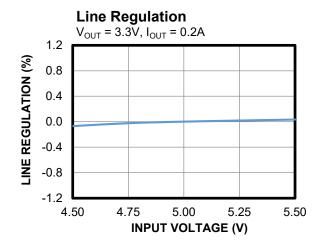
Figure 2: Evaluation Board Schematic

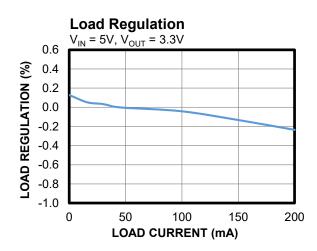

EV1W0505B-LVH-00A BILL OF MATERIALS

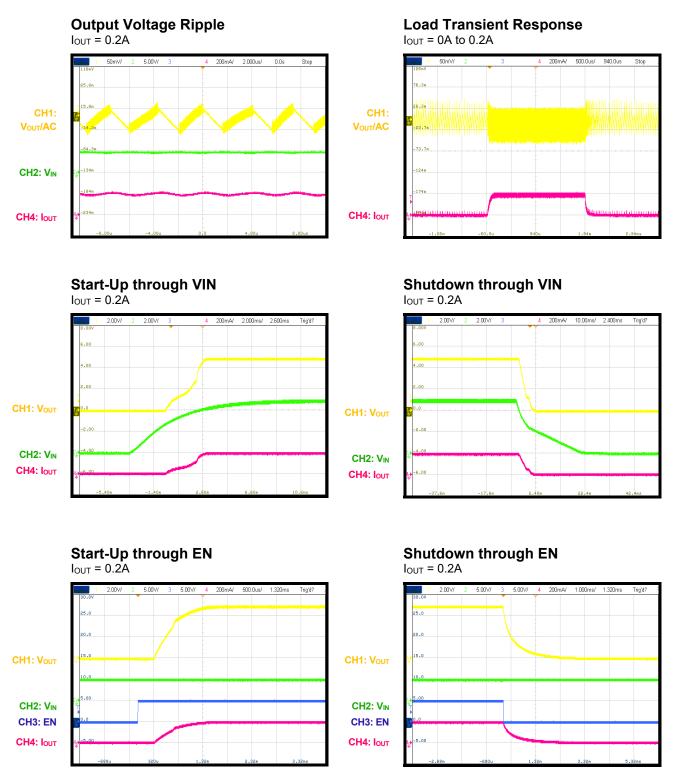

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN	
1	C1A	10µF	Ceramic capacitor, 10V, X7R	0805	Murata	GRM21BR71A106KA73L	
1	C2A	22µF	Ceramic capacitor, 10V, X5R	0805	Wurth	885012107011	
2	C1B, C2B	0.1µF	Ceramic capacitor, 16V, X7R	0402	Murata	GRM155R71C104KA88D	
1	R1	100kΩ	Film resistor, 1%, 0603, 100k Ω	0603	Yageo	RC0603FR-07100KL	
1	CN1	3 pins	3 pins, 1 row, straight	DIP-3	Wurth	61300311121	
1	Jumper	2.54mm	2.54mm, jumper, 1 x 2 pins	DIP	Wurth	60900213421	
1	U1	MIE1W0505BGLVH	1W, 2.5kV _{RMS} isolated DC/DC module	LGA-12 (4mmx 5mm)	MPS	MIE1W0505BGLVH-3R-Z	



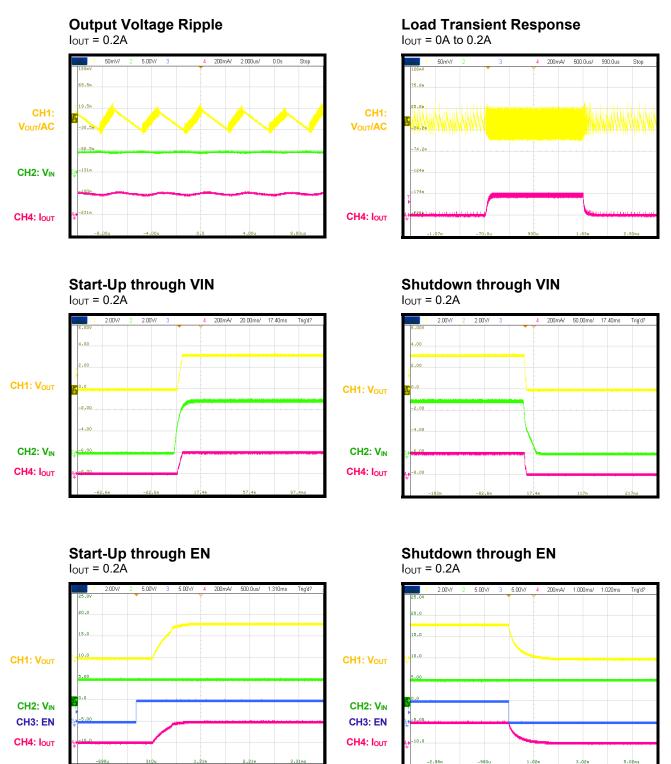

EVB TEST RESULTS

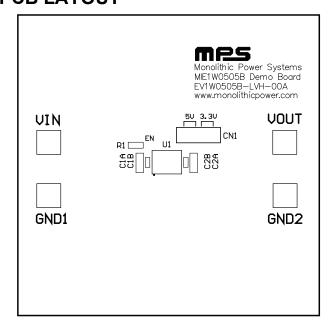

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 5V, V_{OUT} = 5V/3.3V, C_{IN} = 10 μ F, C_{OUT} = 0.1 μ F + 22 μ F, T_A = 25°C, unless otherwise noted.





EVB TEST RESULTS (continued)


Performance curves and waveforms are tested on the evaluation board. V_{IN} = 5V, V_{OUT} = 5V, C_{IN} = 10 μ F, C_{OUT} = 0.1 μ F + 22 μ F, T_A = 25°C, unless otherwise noted.


EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 5V, V_{OUT} = 3.3V, C_{IN} = 10 μ F, C_{OUT} = 0.1 μ F + 22 μ F, T_A = 25°C, unless otherwise noted.

PCB LAYOUT

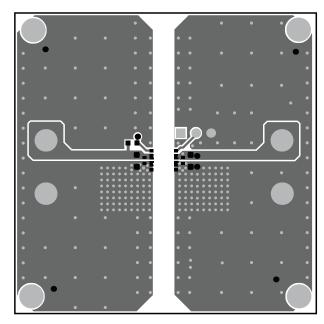


Figure 3: Top Silk

Figure 4: Top Layer

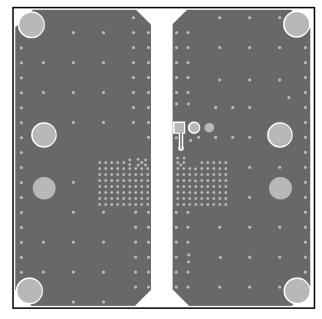


Figure 5: Bottom Layer

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	5/21/2024	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.