

PART NUMBER

2147-70BYA

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

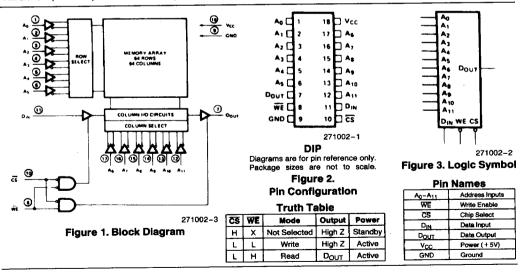
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

M2147H HIGH SPEED 4096 x 1-BIT STATIC RAM

Military

	M2147H-2	M2147H-3	M2147H
Max. Access Time (ns)	45	55	70
Max. Active Current (mA)	180	180	180
Max. Standby Current (mA)	30	30	30

- Pinout, Function, and Power Compatible to Industry Standard M2147
- HMOS* II Technology
- Completely Static Memory—No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single + 5V Supply


- Direct Performance Upgrade for M2147
- Power-Down
- High Density 18-Pin Package
- Separate Data Input and Output
- Three-State Output
- Military Temperature Range: -55°C to +125°C (T_C)

The Intel M2147H is a 4096-bit static Random Access Memory organized as 4096 words by 1-bit using HMOS II, Intel's next generation high-performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold times, nor reduced data rates due to cycle times that are longer than access times.

CS controls the power-down feature. In less than a cycle time after CS goes high-deselecting the M2147Hthe part automatically reduces its power requirements and remains in this low power standby mode as long as CS remains high. This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are deselected.

The M2147H is placed in an 18-pin package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, output, and a single +5V supply. The data is read out nondestructively and has the same polarity as the input data. A data input and a separate three-state output are used.

*HMOS is a patented process of Intel Corporation.

ABSOLUTE MAXIMUM RATINGS*

Case Temperature Under Bias65°C to +135°C
Storage Temperature65°C to +150°C
Voltage on Any Pin
with Respect to Ground
Power Dissipation
D.C. Output Current

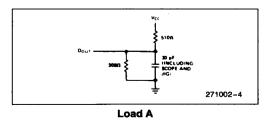
NOTICE: This is a production data sheet. The specifications are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions

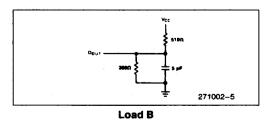
Symbol	Description	Min Min		Units	
Тс	Case Temperature (Instant On)	-55	+ 125	°	
Vcc	Digital Supply Voltage	4.50	5.50	v	

D.C. CHARACTERISTICS (Over Specified Operating Conditions)


Symbol	Parameter	M2147H-2 M2147H-3, M2147H			Unit	Test Conditions		
Symbol	Falanetei	Min	Typ ⁽¹⁾	Max	OTH	104		
I _{LI}	Input Load Current (All Input Pins)		0.01	10	μA	$V_{CC} = Max., V_{IN} = GND to V_{CC}$		
lilol	Output Leakage Current		0.1	50	μA	$\overline{CS} = V_{IH}, V_{CC} = Max.,$ $V_{OUT} = GND to 4.5V$		
lcc	Operating Current		120	170	mA	T _C = 25°C	$V_{CC} = Max., \overline{CS} = V_{IL}$	
				180	mA	T _C = -55°C	Outputs Open	
ISB	Staneby Current		18	30	mA	$V_{CC} = Min. to Max., \overline{CS} = V_{IH}$		
I _{PO} (2)	Peak Power-On Current		35	70	mΑ	$V_{CC} = GND$ to V_{CC} Min. $\overline{CS} = Lower of V_{CC} of V_{IH}$ Min.		
VIL	Input Low Voltage	-3.0		0.8	Î V			
VIH	Input High Voltage	2.0		6.0	V			
VOL	Output Low Voltage			0.4	v	I _{OL} = 8 mA		
VOH	Output High Voltage	2.4			V	$I_{OH} = -4.0 m$	A	
los	Output Short Circuit Current	-275		+ 275	mA	V _{OUT} = GND	to V _{CC} , T _C = 0°C	

NOTES:

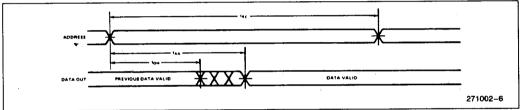
1. Typical limits at $V_{CC} = 5V$, $T_C = +25^{\circ}C$, and Load A. 2. A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected; otherwise, power-on current approaches I_{CC} active.


CAPACITANCE T_C = 25°C, F = 1.0 MHz

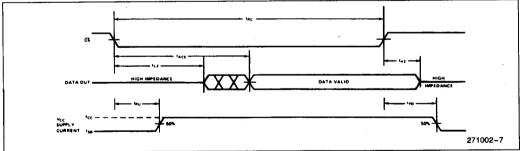
Symbol	Parameter	Max	Unit	Conditions
C _{IN}	Input Capacitance	5	pF	V _{IN} = 0V
COUT	Output Capacitance	6	pF	$V_{OUT} = 0V$

A.C. TEST CONDITIONS

Input Pulse Levels	.GND to 3.0V
Input Rise and Fall Times	5 ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	0.8V-2.0V
Output Load	See Load A


A.C. CHARACTERISTICS (Over Specified Operating Conditions)

READ CYCLE


Symbol		M21	47H-2	M2147H-3		M2147H-3		3 M2147H		Unit	Comments
	Parameter	Min	Max Min Max Min Ma	Max		Comments					
t _{RC} (1)	Read Cycle Time	45		55		70		ns			
t _{AA}	Address Access Time		45		55		70	ns			
tACS1	Chip Select Access Time		45		55		70	ns	(Note 7)		
tACS2	Chip Select Access Time		45		65		80	ns	(Note 8)		
tон	Output Hold from Address Change	5		5		5		ns			
t _{LZ} (2)	Chip Selection to Output in Low Z	5		10		10		ns	(Note 3)		
^t HZ ⁽²⁾	Chip Deselection to Output in High Z	0	30	0	30	0	40	ns	(Note 3)		
tpu	Chip Selection to Power Up Time	0		0		0		ns			
tPD	Chip Deselection to Power Down Time		20		20		30	ns			

WAVEFORMS

READ CYCLE NO. 1(4, 5)

READ CYCLE NO. 2 (4, 6)

NOTES:

1. All Read Cycle timings are referenced from the last valid address to the first transitioning address.

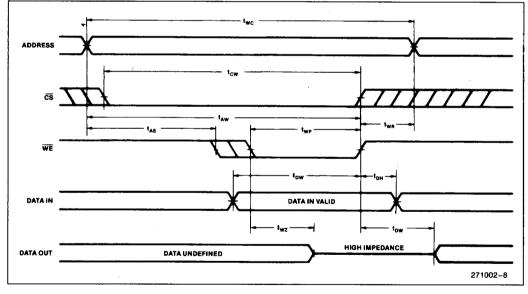
2. At any given temperature and voltage condition, tHz max. is less than tLz min. both for a given device and from device to device.

3. Transition is measured ±500 mV from steady state voltage with Load B.

- 4. WE is high for Read Cycles.
- 5. Device is continuously selected, $\overline{\text{CS}} = \text{V}_{\text{IL}}$. 6. Addresses valid prior to or coincident with $\overline{\text{CS}}$ transition low.
- 7. Chip deselected for greater than 55 ns prior to selection.

8. Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is 0 ns, the chip is by definition selected and access occurs according to Read Cycle No. 1.)

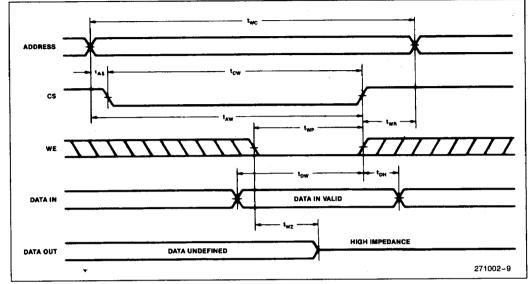
8-8


A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol	Parameter	M21	47H-2	M21	47H-3	M2147H		11-14	
	Farameter	Min	Max	Min	Max	Min	Max	Unit	Comments
twc ⁽²⁾	Write Cycle Time	45		55		70		ns	
tcw	Chip Selection to End of Write	45		45		55		ns	
taw	Address Valid to End of Write	45		45		55		ns	*
t _{AS}	Address Setup Time	0		0		0		ns	
twp	Write Pulse Width	25		25		40		ns	
twn	Write Recovery Time	0		10		15		ns	
tow	Data Valid to End of Write	25		25		30		ns	
t _{DH}	Data Hold Time	10		10		10		ns	
twz	Write Enable to Output in High Z	0	25	0	25	0	35	ns	(Note 3)
tow	Ouput Active from End of Write	0		0		0		ns	(Note 3)

WAVEFORMS


WRITE CYCLE NO. 1 (WE CONTROLLED) (4)

8

. . .

WAVEFORMS (Continued)

WRITE CYCLE NO. 2 (CS CONTROLLED) (4)

NOTES:

If CS goes high simultaneously with WE high, the output remains in a high impedance state.
All Write Cycle timings are referenced from the last valid address to the first transitioning address.

- 3. Transition is measured \pm 500 mV from steady state voltage with Load B.
- 4. CS or WE must be high during address transitions.