

PART NUMBER

54L75JC-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN5475, 7475, 54L75

4-Bit Bistable Latches

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data onput at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

The '75 features complementary Q and \overline{Q} outputs from a 4-bit latch, and are available in various 16-pin packages.

These circuits are completely compatible with all popular TTL families. All inputs are diodeclamped to minimize transmission-line effects and simplify system design. Series 54 devices are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74 devices are characterized for operation from 0°C to 70°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

© 2018 Rochester Electronics, LLC. All Rights Reserved 11022018

SN5475, SN5477, SN54LS75, SN54LS77, SN7475, SN74LS75 **4-BIT BISTABLE LATCHES**

MARCH 1974 - REVISED MARCH 1988

FUNCTION TABLE (each latch)

INP	UTS	ουτ	PUTS
D	с	a	ā
L	н	L	н
н	н	н	L
×	Ļ	00	$\overline{\mathbf{Q}}_{0}$

H = high level, L = low level, X = irrelevant

 Q_0 = the level of Q before the high-to-low transition of G

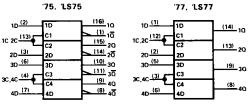
description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to ao hiah.

The '75 and 'LS75 feature complementary Q and \overline{Q} outputs from a 4-bit latch, and are available in various 16-pin packages. For higher component density applications, the '77 and 'LS77 4-bit latches are available in 14-pin flat packages.

These circuits are completely compatible with all popular TTL families. All inputs are diode-clamped to minimize transmission-line effects and simplify system design. Series 54 and 54LS devices are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74, and 74LS devices are characterized for operation from 0°C to 70°C.

SN7475 SN74LS75	D 2 15 20 D 3 14 20 C 4 13 16, 20 C 5 12 GND D 6 11 30 D 6 11 30 D 6 11 30				
10 10 20 3C, 4C VCC 3D 40 40	2 15 20 3 14 20 4 13 1C, 2C 5 12 GND 6 11 30 7 10 30				


SN5477, SN54LS77 ... W PACKAGE (TOP VIEW) 100 $\bigcup 14 \square 10$ 2D [2 13 20 3C, 4C 🖂 3 12 1C, 2C 11 GND 10 NC 9 30 Vcc ∏₄ 3D [] 5 4D 🛛 6 8 40

NC - No internal connection

'77, 'LS77

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

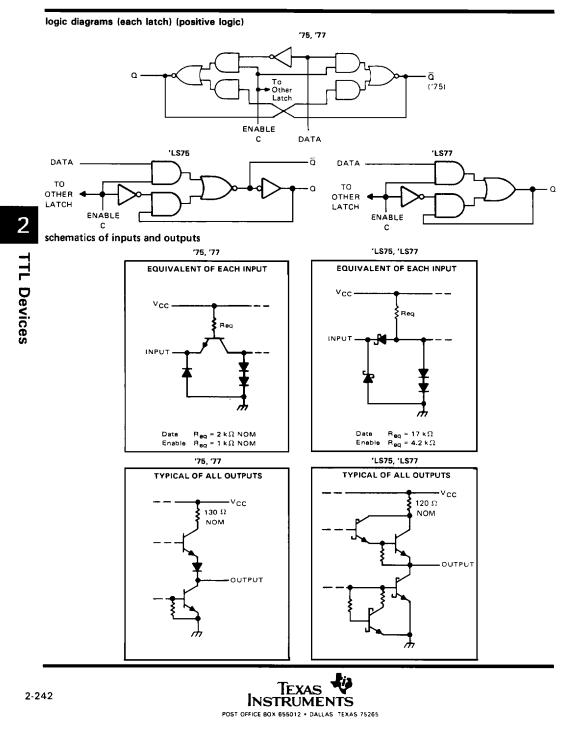
.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1)		7V
Input voltage: '75, '77		. 5.5 V
LS75, LS77		7V
Interemitter voltage (see Note 2).		. 5.5 V
Operating free-air temperature range	: SN54′	o 125°C
-	SN74' 0° C	to 70°C
Storage temperature range	– 65°C t	o 150°C

NOTES: 1 Voltage values are with respect to network ground terminal.

2 This is the voltage between two emitters of a multiple-emitter input transistor and is not applicable to the 'LS75 and 'LS77


PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard warraaty. Production processing dees not necessarily include testing of all parameters.

2-241

.

SN5475, SN5477, SN54LS75, SN54LS77, SN7475, SN74LS75 4-BIT BISTABLE LATCHES

recommended operating conditions

	SN5	475, SN	5477	SN7475			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	45	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			16			16	mA
Width of enabling pulse, tw	20		_	20			ns
Setup time, t _{su}	20			20			ns
Hold time, th	5	·		5		_	ns
Operating free-air temperature, TA	-55		125	0	_	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDIT	IONST	MIN	TYP‡	MAX	UNIT
Чн	High-level input voltage					2			v
ViL	Law-level input voltage							0.8	v
VIK	Input clamp voltage		V _{CC} = MIN,	= _ا ا	~12 mA			1.5	V
vон	High-level output voltage		V _{CC} = MIN, V _{II} ≈ 0.8 V,		ι=2V, ι=−400μΑ	2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{II} = 0.8 V,	۷I۲	j = 2 V, = 16 mA		0,2	04	v
η.	Input current at maximum input voltage		V _{CC} = MAX,		= 5.5 V	1		1	mA
	High-level input current	D input	VCC = MAX, Vi = 24 V				80	μΑ	
V _{IK} I V _{OH} I V _{OL} I I _I I I _{IH} I I _{IL} I I _{OS} S		Cinput	VCC - MAX, VI = 24 V						160
	Low-level input current	D input		-0414	1		-32		
IH IL	Low-level input current C input		$V_{CC} = MAX$, $V_{\dagger} = 0.4 V$		-040			-6.4	mA
100	Short-circuit output current		VCC = MAX		SN54'	20		-57	
'US					SN 74'	-18		-57	mΑ
i.e.e	Supply current		V _{CC} = MAX,		SN54'		32	46	
'cc	Supply current		See Note 3		SN74'		32	53	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions, ¹ All typical values are at V_{CC} = 5 V, T_A = 25^oC ⁸Not more than one output should be shorted at a time NOTE 3 1_{CC} is tested with all inputs grounded and all outputs open

switching characteristics, VCC = 5 V, TA = 25° C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	- 0	Q		16	30	
1PHL]	u u		14	25	_ ns
tPLH¶		ā	C _L = 15 pF, R _L = 400 Ω.	24	40	
tPHL¶				7	15	ns
^{IPLH}	c	Q	See Figure 1	16	30	
[†] PHL		7	15	- ns		
ΨLH¶	c	ā	1	16	30	—
₽НС¶	ŬŬ	<u> </u>		7	15	- ns

tp_H - propagation delay time, low to high-level output tpHL ≞ propagation delay time, high-to low level output ¶ These parameters are not applicable for the SN5477.

Texas 🖑 INSTRUMENTS POST OFFICE BOX 655012 . DALLAS TEXAS 75265

2-243

SN54LS75, SN54LS77, SN74LS75 **4-BIT BISTABLE LATCHES**

recommended operating conditions

	SN54LS75 SN54LS77			SN74LS75			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	1
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			400			-400	μA
Low-level output current, IOL			4			8	mA
Width of enabling pulse, tw	20			20	•		ns
Setup time, t _{SU}	20			20			ns
Hold time, th	5			5			ns
Operating free-air temperature, TA	-55		125	Ó		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

2 TTL Devices

Г

	PARAMETER	PARAMETER TEST CONDITIONS [†]		IS [†]	SN54LS75 SN54LS77			s	75		
					MIN	TYP	MAX	MIN	TYP	мах]
Vін	High-level input voltage				2			2			v
VIL	Low-level input voltage						07			0.8	v
VIK	Input clamp voltage	V _{CC} - MIN,	lj = - 18 mA				-15			~1.5	v
∨он	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL} max, ¹ OH = -400 μA		2.5	35	-	2.7	35		v	
Vai	Low-level output voltage	V _{CC} = MIN,	VIH = 2 V,	IOL = 4 mA		0 25	04		0 25	04	v
VUL	Environ on part vortage	VIL - VIL max		IOL = 8 mA					0 35	035 05	
4	Input current at	Vcc = MAX,	Vi = 7 V	Dinput			0.1			01	
	maximum input voltage	$\nabla CC = MAX, \nabla I = VV$	Cinput			0.4			0.4	mA	
ųн	High-level input current	V _{CC} = MAX,	Vi= 27 V	Dinput			20			20	
HI-	Trigh level inpart content		01-270	Cinput			80			0.8 -1.5 3 5 0 25 0 4 0 35 0 5 0 1 0 4 20 80 -0 4 -16 -100 6.3 12	μА
կլ	Low-level input current	Vcc = MAX,	VI = 0.4 V	D input	[04			-04	
· · · C	Low with input content	VCC - WAX,	V] - 0.4 V	Cinput			-16			-16	mA
los	Short-circuit output current \$	V _{CC} = MAX			- 20		-100	-20		-100	mA
Icc	Supply current	Supply current VCC = MAX,	See Note 2	'LS75		6.3	12		6.3	12	
			occinote 2	'LS77	Γ	6.9	13				mA

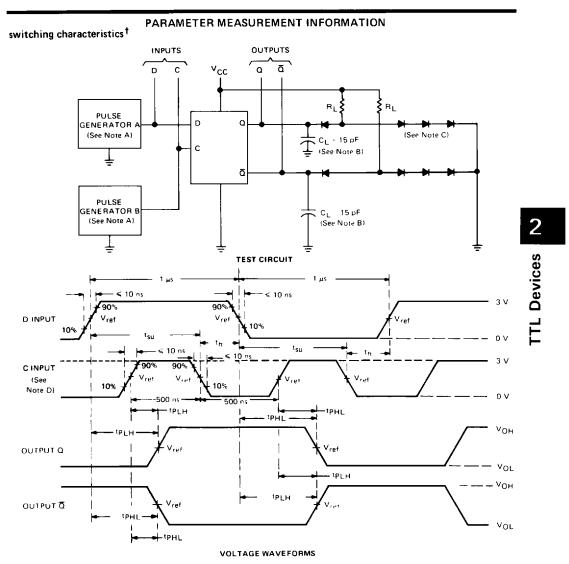
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

All typical values are at $V_{CC} = 5 V$, $T_A = 25 C$ ³Not more than one purput should be shorted at a time, and duration of the short circuit should not exceed one second NOTE 2 = I_{CC} is tested with all inputs grounded and all outputs open

-

switching characteristics, V_{CC} = 5 V, T_A = 25 C

PARAMETER	FROM	то	TEST CONDITIONS	'L\$75				[
	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
[†] PLH	D	Q			15	27		11	19			
^t PHL		ŭ	ŭ	ŭ			9	17		9	17	ns
^t PLH		à			12	20						
1PHL		ŭ	CL = 15 pF,		7	15				ns		
PLH	с		RL ≈ 2 kΩ, See Figure 1		15	27		10	18			
1PHL		ŭ	See ⊢igure 1 		14	25		10	18	ns		
†PLH	с	ō			16	30						
1PHL					7	15				ns		


f tp_H is protragation delay time, low to high level output tp_H is propagation delay time, high to low level output

2-244

SN5475, SN5477, SN54LS75, SN54LS77, SN7475, SN74LS75 **4-BIT BISTABLE LATCHES**

[†]Complementary Q outputs are on the '75 and 'LS75 only.

NOTES. A. The pulse generators have the following characteristics Z_{OUI} \approx 50 Ω ; for pulse generator A, PRR \leq 500 kHz, for pulse generator B, PRR \leq 1 MHz Positions of D and C input pulses are varied with respect to each other to verify setup times.

- B. CL includes probe and jig capacitance C. All diodes are 1N3064 or equivalent. D. When measuring propagation delay times from the D input, the corresponding C input must be held high. E. For '75 and '77, $V_{ref} = 1.5 V$; for 'LS75 and 'LS77, $V_{ref} = 1.3 V$.

FIGURE 1

2-245

POST OFFICE BOX 655012 . DALLAS TEXAS 75265

....