

AM27S185, AM27S185A

8,192-Bit (2048x4) Bipolar PROM

The AM27S185 (2048 words by 4 bits) is a Schottky TTL Programmable Read-Only Memory (PROM).

This device has three-state outputs, compatible with low-power Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy-word depth expansion is facilitated by an active LOW (\overline{G}) output enable.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

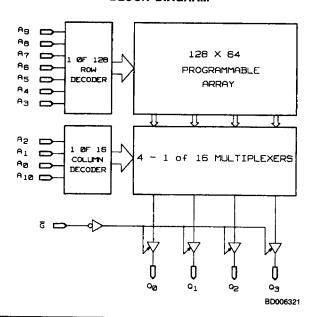
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am27S185/27S185A

8,192-Bit (2048x4) Bipolar PROM

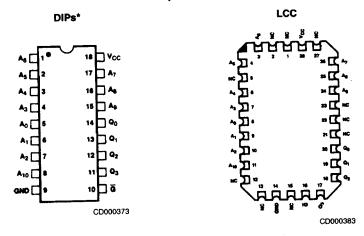
DISTINCTIVE CHARACTERISTICS

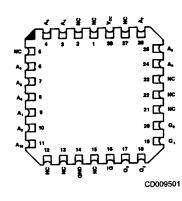

- Ultra-fast access time "A" version (35 ns Max.) Fast access time Standard version (50 ns Max.) — allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm

GENERAL DESCRIPTION

The Am27S185 (2048 words by 4 bits) is a Schottky TTL Programable Read-Only Memory (PROM).

This device has three-state outputs, compatible with lowpower Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy-word depth expansion is facilitated by an active LOW (G) output enable.

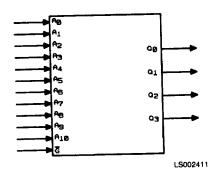

BLOCK DIAGRAM


PRODUCT SELECTOR GUIDE

Three-State Part Number	Am27S185A		Am27S185		
Address Access Time	35 ns	45 ns	50 ns	55 ns	
Operating Range	С	М	С	М	

CONNECTION DIAGRAMS Top View

LCC**



Note: Pin 1 is marked for orientation.

*Also available in an 18-pin Flatpack. Pinout identical to DIPs.

**Also available in a 28-pin square PLCC. Pinout identical to LCC.

LOGIC SYMBOL

5-179

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

b. Speed Option (if applicable)

f. Alternate Packaging Option

- c. Package Type
- d. Temperature Range
- e. Optional Processing
- AM27S185

 A C B -S

 1. ALTERNATE PACKAGING OPTION

 -S = 28-Pin Square Ceramic Leadless Chip Carrier with Thinner Ceramic Thickness (CLT028)

 -Blank = Standard processing

 B = Burn-in

 d. TEMPERATURE RANGE

 C = Commercial (0 to + 75°C)

 -C. PACKAGE TYPE

 P = 18-Pin Plastic DIP (DD 018)

 D = 18-Pin Ceramic DIP (DD 018)

 F = 18-Pin Geramic DIP (DD 018)

 E = 18-Pin Geramic DIP (DD 018)

 Carrier (CLR028)

 J = 28-Pin Plastic Leadled Chip Carrier (PL 028)

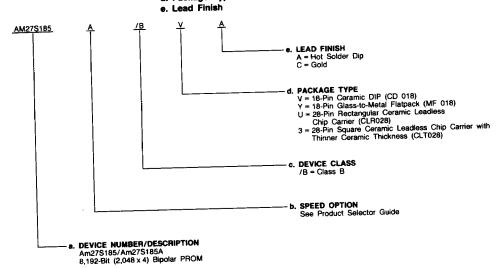
 b. SPEED OPTION

 See Product Selector Guide

Valid Combinations					
AM27S185	PC, PCB, DC DCB, FC, FCB, LC, LCB.				
AM27S185A	LC-S, LCB-S, JC, JCB				

a. DEVICE NUMBER/DESCRIPTION Am27S185/Am27S185A 8,192-Bit (2,048 x 4) Bipolar PROM

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Device Class
- d. Package Type

Valid Co	ombinations
AM27S185	/BVA, /BYC, /BUA, /B3A,
AM27S185A	/BUA, /B3A,

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

MILITARY BURN-IN

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option.

PIN DESCRIPTION

A₀ - A₁₀ Address Inputs
The 11-bit field presented at the address inputs selects one of 2,048 memory locations to be read from.

Q₀ - Q₃ Data Output Port

The outputs whose state represents the data read from the selected memory locations.

G Output Enable

Provides direct control of the Q-output buffers. Outputs disabled forces all three-state outputs to a floating or highimpedance state.

Enable = G

Disable = G

V_{CC} Device Power Supply Pin

The most positive of the logic power supply pins.

GND Device Power Supply Pin

The most negative of the logic power supply pins.

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Ambient Temperature (Supply Voltage (V _{CC}) .	T _A) 0 to +75°C +4.75 V to +5.25 V
Military (M) Devices Case Temperature (To: Supply Voltage (Vcc))55 to +125°C +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

*Military products 100% tested at $T_C = +25$ °C, +125°C, and -55°C.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

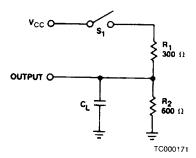
Parameter Symbol	Parameter Description	Test Conditions		Min.	Тур.	Max.	Unit
V _{OH} (Note 1)	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -2.0 I V _{IN} = V _{IH} or V _{IL}	2.4			٧	
Vol	Output LOW Voltage	V _{CC} = Min., I _{OL} = 16 mA V _{IN} = V _{IH} or V _{IL}				0.50	٧
ViH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			٧
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	٧
l _{IE}	Input LOW Current	V _{CC} = Max., V _{IN} = 0.45 V			<u> </u>	-0.250	mA
In In	Input HIGH Current	V _{CC} = Max., V _{IN} = V _{CC}				40	μΑ
I _{SC} (Note 1)	Output Short Circuit Current	V _{CC} ≠ Max. V _{OUT} = 0.0 V (Note 3)		-20		-90	mA
lcc	Power Supply Current	All inputs = GND VCC = Max.				150	mA
Vi	Input Clamp Voltage	V _{CC} = Min., I _{IN} = -18 mA			<u> </u>	-1.2	V
ICEX	Output Leakage Current	V _{CC} = Max.	Vo = Voc		J	40	Aμ
		VG = 2.4 V	VO = 0.4 V			-40	
CiN	Input Capacitance	V _{IN} = 2.0 V @ f = 1 MHz (Note 4) V _{CC} = 5 V., T _A = 25°C			5.0		pF
Соит	Output Capacitance	V _{OUT} = 2.0 V @ f = 1 MHz (Note 4) V _{OC} = 5 V., T _A = 25°C			8.0		

Notes: 1. This applies to three-state devices only.

- 1. This applies to these-state devices only.
 2. V_{IL} and V_{IH} are input conditions of output tests and are not themselves directly tested. V_{IL} and V_{IH} are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- Will suitable equipment.

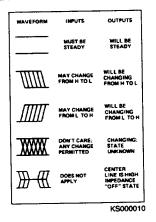
 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not be more than one second.

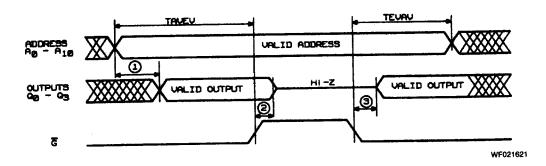
 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.


SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted*)

	Parameter	Parameter Description	Version	COM'L		MIL		!
	Symbol			Min.	Max.	Min.	Max.	Unit
1 TAVQV	Address Valid to Output Valid Access Time	A		35		45	ns	
		STD		50		55		
2 TGVQZ Delay from Output Enable Valid to Output	Delay from Output Enable Valid to Output Hi Z	Α		25		30	ns	
	The state of the s	STD		25		30		
3 TGVQV	Delay from Output Enable Valid to Output Valid	Α		25		30		
		Super Zhable valid to Output Valid	STD		25		30	ns

See also Switching Test Circuit.


Notes: 1. Tests are performed with input transition time of 5 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.


SWITCHING TEST CIRCUIT

Notes: 1. TAVQV is tested with switch S₁ closed and C₁ = 50 pF.
2. For three-state outputs, TGVQV is tested with C₁ = 50 pF to the 1.5 V level: S₁ is open for high-impedance to HIGH tests and closed for high-impedance to LOW tests. TGVQZ is tested with C₁ = 5 pF. HIGH to high-impedance tests are made to an output steady state HIGH voltage – 0.5 V with S₁ open; LOW to high-impedance tests are made to the steady state LOW + 0.5 V level with S₁ closed.

SWITCHING WAVEFORMS KEY TO SWITCHING WAVEFORMS

