

PART NUMBER 54F151B2A-ROCA

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

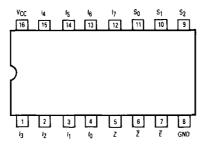
Qualified Suppliers List of Distributors (QSLD)

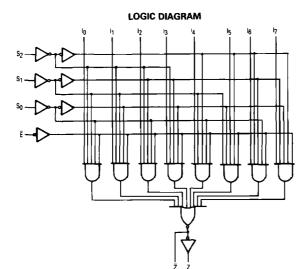
 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

8-Input Data Selector/Multiplexer


ELECTRICALLY TESTED PER: MIL-M-38510/33901


The 54F151 is a high-speed 8-input digital multiplexer. It provides in one package, the ability to select one line of data from up to eight sources. The 'F151 can be used as a universal function generator to generate any logic function of four variables. Both asserted and negated outputs are provided.

The 'F151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of the three Select inputs, S_0 , S_1 , S_2 . The Enable input (\overline{E}) is active LOW. The logic function provided at the output is:

$$Z = \overline{E} \cdot ([0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot \underline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot \underline{S}_1 \cdot \overline{S}_2 + I_3 \cdot \underline{S}_0 \cdot \underline{S}_1 \cdot \overline{S}_2 + I_4 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \underline{S}_2 + I_5 \cdot \underline{S}_0 \cdot \overline{S}_1 \cdot \underline{S}_2 + I_6 \cdot \overline{S}_0 \cdot \underline{S}_1 \cdot \underline{S}_2 + I_7 \cdot \underline{S}_0 \cdot \underline{S}_1 \cdot \underline{S}_2)$$

CONNECTION DIAGRAM

Military 54F151

AVAILABLE AS:

1) JAN: JM38510/33901BXA

2) SMD: *

3) 883C: 54F151/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E

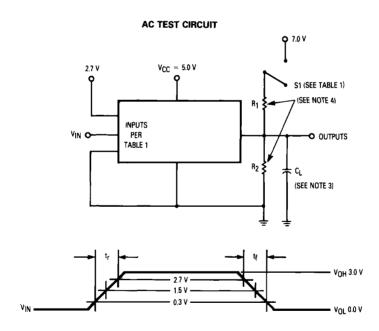
CERFLAT: F

*Call Factory for latest update

PIN ASSIGNMENTS

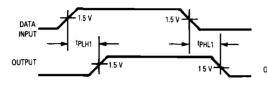
FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION A
13	1	1	2	VCC
13 1 ₂	2	2	3	Vcc
11	3	3	4	VCC
	4	4	5	VCC
ž	5	5	7	OPEN
lo Z Ž	6	6	8	OPEN
Ē	7	7	9	VCC
GND	8	8	10	GND
S ₂	9	9	12	VCC
S ₁	10	10	13	VCC
S ₁ S ₀	11	11	14	VCC
17	12	12	15	Vcc
16	13	13	17	VCC
15	14	14	18	VCC
l <u>å</u>	15	15	19	VCC
VCC	16	16	20	VCC

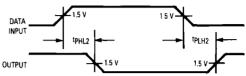
BURN-IN CONDITIONS: V_{CC} = 5.0 V MIN/6.0 V MAX

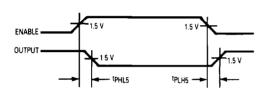

Table 1

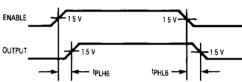
Test Type	S1
tPLH	open
tpHL.	apen
tPHZ	open
^t PZH	open
tPLZ	closed
tPZL	closed

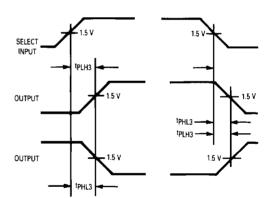
54F151

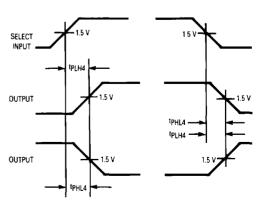

TRUTH TABLE							
	Inp	Outputs					
Ē	S ₂	S ₁	S ₀	Ž	Z		
Н	Х	×	×	н	L		
L	L	L	Ł	Ĩο	10		
L	L	L	н	Ī ₁	Ιĭ		
L	L	Н	L	Ī2	l2		
L	L	н	н	Ĭз	la		
L	н	L	L	Ī3 Ī4	14		
L	н	L	Н	Ī5	3 4 5		
L	Н	н	Ļ	Ī ₆	16		
L	н	н	н	17	17		


H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial




54F151


WAVEFORMS



NOTES:

- **NOTES:**1. V_{IN} = Input pulse and has the following characteristics: PRR \leq 1.0 MHz, t_T = t_T \leq 2.5 ns, Z_{Out} \approx 50 Ω .
 2. Terminal conditions (pins not designated may be high \approx 2.0 V, low \leq 0.8 V, or open.
 3. C_L = 50 pF \pm 10% including scope probe, wiring and stray capacitance, without package in test fixture.
 4. R₁ = R₂ = 499 Ω \pm 5.0%.
 5. Voltage measurements are to be made with respect to network ground terminal.

54F151

Symbol	mbol Parameter Limits					Units	Test Condition (Unless Otherwise Specified)		
		+2	25°C + 1		25°C	- 55°C			_
	Static Parameters:	Subgroup 1		Subgroup 2		Subgroup 3			
		Min	Max	Min	Max	Min	Max		
Vон	Logical "1" Output Voltage	2.5		2.5	i	2.5		v	$ \begin{array}{l} V_{CC} = 4.5 \ \text{V, I}_{OH} = -1.0 \ \text{mA,} \\ V_{IL} = 0.8 \ \text{V, S} = 0.8 \ \text{V or } 2.0 \ \text{V,} \\ \overline{E} = 2.0 \ \text{V or } 0.8 \ \text{V.} \\ \end{array} $
VOL	Logical "0" Output Voltage		0.5		0.5		0.5	٧	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA}, V_{IH} = 2.0 \text{ V},$ S = 0.8 V or 2.0 V, $\overline{E} = 0.8 \text{ V}.$
VIC	Input Clamping Voltage		- 1.2					٧	V _{CC} = 4.5 V, I _{IN} = -18 mA, other inputs are open.
ΙΉ	Logical "1" Input Current		20		20		20	μΑ	V _{CC} = 5.5 V, V _{IH} = 2.7 V, other inputs are open, \tilde{E} = 4.5 V or (2.7 V), S = 0 V, 4.5 V or (2.7 V).
ηнн	Logical "1" Input Current		100		100		100	μА	V _{CC} = 5.5 V, V _{IHH} = 7.0 V, other inputs are open, \vec{E} = 4.5 V or (7.0 V), S = 0 V, 4.5 V or (7.0 V).
lir.	Logical "0" Input Current	- 0.03	-0.6	- 0.03	0.6	-0.03	-0.6	mA	$V_{CC} = 5.5 \text{ V}, V_{ N} = 0.5 \text{ V},$ other inputs are open, $\vec{E} = 0 \text{ V}$ or (0.5 V) S = 4.5 V, 0 V or $(0.5 V)$.
lOD	Diode Current	60		60		60		mA	$V_{CC}=4.5$ V, other inputs are open, $S=0$ V, $V_{IN}=5.5$ V, $V_{OUT}=2.5$ V, $E=5.5$ V or 0 V.
los	Short Circuit Output Current	- 60	- 150	- 60	- 150	- 60	- 150	mA	$V_{CC} = 5.5 \text{ V}$, $V_{IN} = 4.5 \text{ V}$, all other inputs are open, $V_{OUT} = 0 \text{ V}$, $S = 0 \text{ V}$, $\overline{E} = 0 \text{ V}$.
Icc	Power Supply Current		21		21		21	mA	V _{CC} = 5.5 V, V _{IN} = 4.5 V (all inputs).
VIH	Logical "1" Input Voltage	2.0		2.0		2.0		٧	V _{CC} = 4.5 V.
VIL	Logical "0" Input Voltage		0.8		0.8		0.8	٧	V _{CC} = 4.5 V.
		Subgroup 7		Subgroup 8A		Subgroup 8B			
	Functional Tests								per Truth Table with $V_{CC}=4.5$ V, (Repeat at), $V_{CC}=5.5$ V, $V_{IL}=0.5$ V, and $V_{IH}=2.5$ V.

54F151

Symbol	Limits						Units	Test Condition (Unless Otherwise Specified)	
	+25°C		+ 125°C		-55°C				
	Switching Parameters	Subgroup 1		Subgroup 2		Subgroup 3			
	Min	Max	Min	Max	Min	Max	1		
^t PHL1	Propagation Delay /Data-Output In to Z	3.7	7.0	3.5	9.0	3.5	9.0	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
^t PLH1	Propagation Delay /Data-Output In to Z	3.0	6.5	2.5	8.5	2.5	8.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
[†] PHL2	Propagation Delay /Data-Output In to Z	1.5	4.0	1.5	6.0	1.5	6.0	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
^t PLH2	Propagation Delay /Data-Output In to Z	3.0	6.5	2.5	7.5	2.5	7.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,} $ $R_1 = R_2 = 499 \Omega.$
^t PHL3	Propagation Delay /Data-Output S _n to Z	4.0	9.0	4.0	9.5	4.0	9.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
^t PLH3	Propagation Delay /Data-Output S _n to Z	4.5	13	4.5	13.5	4.5	13.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,} $ $R_1 = R_2 = 499 \Omega.$
[†] PHL4	Propagation Delay /Data-Output S _n to Z	3.2	7.5	3.0	8.0	3.0	8.0	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,} $ $R_1 = R_2 = 499 \Omega.$
^t PLH4	Propagation Delay /Data-Output Sn to Z	4.0	9.0	3.5	11.5	3.5	11.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,} $ $R_1 = R_2 = 499 \Omega.$
^t PHL5	Propagation Delay /Data-Output E to Z	3.5	7.0	3.0	8.0	3.0	8.0	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
[†] PLH5	Propagation Delay /Data-Output E to Z	5.0	9.5	4.0	12	4.0	12	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
^t PHL6	Propagation Delay /Data-Output E to Z	3.0	6.0	2.5	6.5	2.5	6.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$
tPLH6	Propagation Delay /Data-Output E to Z	3.0	6.1	3.0	7.5	3.0	7.5	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF,}$ $R_1 = R_2 = 499 \Omega.$