

PART NUMBER

74FCT244APC-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74FCT244A

lochester lectronics[®]

Octal Buffer/Line Driver with TRI-STATE Outputs

The 'FCT244A is an octal buffer and line driver designated to be employed as a memory address driver, clock driver and bus-oriented transmitter/receiver which provides improved PC board density.

Rochester Electronics Manufactured Components Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.	 Quality Overview ISO-9001 AS9120 certification Qualified Manufacturers List (QML) MIL-PRF-38535 Class Q Military Class V Space Level Qualified Suppliers List of Distributors (QSLD) Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.	Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

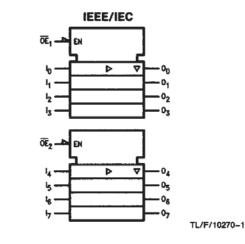
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

T-52-09

244A

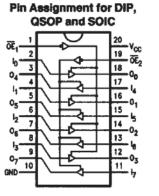
74FCT244A Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description


The 'FCT244A is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter/receiver which provides improved PC board density.

Features

- I_{CC} and I_{OZ} reduced to 40.0 μA and ±2.5 μA respectively
- NSC 74FCT244A is pin and functionally equivalent to IDT 74FCT244A
- TRI-STATE outputs drive lines or buffer memory address registers
- TTL input and output level compatible
- TTL inputs accept CMOS levels
- High current latch up immunity
- I_{OL} = 64 mA
- Electrostatic discharge protection ≥ 2 kV


Ordering Code: See Section 8

Pin Names	Description					
OE1, OE2	TRI-STATE Output Enable Inputs					
10-17	Inputs					
00-07	Outputs					

Connection Diagram

TL/F/10270-2

Truth Tables

Inpu	rts	Outputs
OE ₁	D	(Pins 12, 14, 16, 18)
L	L	L
L	н	н
н	Х	Z

inpu	its	Outputs		
OE2	D	(Pins 3, 5, 7, 9)		
L	L	L		
L	н	н		
н	X	Z		

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

7

244A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GI 74FCTA	ND (VTERM) -0.5V to +7.0V
Temperature under Bias (T _{BIAS}) 74FCTA	-55°C to +125°C
Storage Temperature (T _{STG}) 74FCTA	-55°C to +125°C
DC Output Current (IOUT)	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be mel, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT FCT circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC}) 74FCTA	4.75V to 5.25V
Input Voltage	OV to V _{CC}
Output Voltage	OV to VCC
Operating Temperature (T _A) 74FCTA	-0°C to +70°C
Junction Temperature (TJ) PDIP	140°C

Note: All commercial packaging is not recommended for applications requiring greater than 2000 temperature cycles from -40°C to +125°C.

DC Characteristics for 'FCTA Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditons shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0°C$ to +70°C; $V_{HC} = V_{CC} - 0.2V$.

Symbol	nbol Parameter	74FCTA		Units	Conditions		
Symbol	Faraneter	Min	Тур	Max			
VIH	Minimum High Level Input Voltage	2.0			v		•
VIL	Maximum Low Level Input Voltage			0.8	v		
Iн	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V \text{ (Note 2)}$
μL	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	$V_I = 0.5V$ (Note 2) $V_I = GND$
loz	Maximum TRI-STATE Current			2.5 2.5 -2.5 -2.5	μА	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$
VIK	Clamp Diode Voltage	an made a	-0.7	-1.2	v	$V_{CC} = Min; I_N = -18 \text{ mA}$	
los	Short Circuit Current	-60	-120		mA	V _{CC} = Max (Note 1); V _O = GND	
VOH	Minimum High Level	2.8	3.0			$V_{\rm CC} = 3V; V_{\rm IN} = 0$.2V or V _{HC} ; $I_{OH} = -32 \mu A$
	Output Voltage	V _{HC} 2.4	V _{CC} 4.3		V	V _{CC} = Min V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -300 \mu A$ $I_{OH} = -15 m A$
VOL	Maximum Low Level		GND	0.2		$V_{CC} = 3V; V_{IN} = 0$.2V or V_{HC} ; $I_{OL} = 300 \ \mu A$
	Output Voltage		GND 0.3	0.2 0.55	v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 300 \mu\text{A}$ $I_{OL} = 64 \text{mA}$
lcc	Maximum Quiescent Supply Current		1.0	40.0	μΑ	$ \begin{array}{l} V_{CC} = Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ f_{I} = 0 \end{array} $	
Δlcc	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)	

DC Characteristics for 'FCTA Family Devices (Continued)

Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditons shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; $V_{HC} = V_{CC} - 0.2V$.

Symbol	Parameter		74FCTA		Units	Conditions	
Parameter			Тур	Max	onito		
ICCD Dynamic Power Supply Current (Note 4)		0.25 0.40		mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE}_1 = \overline{OE}_2 = GND$ One Input Toggling 50% Duty Cycle	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
lc	Total Power Supply Current (Note 6)		1.5	4.5	mA	$V_{CC} = Max$ Outputs Open $\overline{OE}_1 = \overline{OE}_2 = GND$	$V_{\text{IN}} \ge V_{\text{HC}}$ $V_{\text{IN}} \le 0.2 \text{V}$
			1.8	5.0		f _l = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$
			3.0	8.0	ing.	(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE}_1 = \overline{OE}_2 = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$
			5.0	14.5		f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

Icc = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

 $\begin{array}{l} \mathsf{D}_{H} = \mathsf{Duty} \; \mathsf{Cycle} \; \mathsf{for} \; \mathsf{TTL} \; \mathsf{Inputs} \; \mathsf{High} \\ \mathsf{N}_{T} = \mathsf{Number} \; \mathsf{of} \; \mathsf{Inputs} \; \mathsf{at} \; \mathsf{D}_{H} \end{array}$

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

I_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency

NI = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

7-17

244A

244A

AC Electrical Characteristics: See Section 2 for Waveforms

	74FCTA	74FCT/	Units	Fig. No.		
Symbol	Parameter	$ \begin{array}{c} T_A = +25^\circ C \\ V_{CC} = 5.0 V \end{array} \begin{array}{c} T_A, V_{CC} = Com \\ R_L = 500\Omega \\ C_L = 50 pF \end{array} $				
	Тур	Min (Note 1)	Max]		
tPLH tPHL	Propagation Delay D _n to O _n	3.1	1.5	4.8	ns	2-8
tezh tezl	Output Enable Time	3.8	1.5	6.2	ns	2-11
tphz tplz	Output Disable Time	3.3	1.5	5.6	ns	2-11

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance (T_A = +25°C, f = 1.0 MHz)

Symbol	Parameter (Note)	Тур	Max	Units	Conditions
CIN	Input Capacitance	6	10	рF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	ρF	VOUT = 0V

Note: This parameter is measured at characterization but not tested.