

PART NUMBER

54F251ABEA-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54F251A,74F251A

54F251A 74F251A 8-Input Multiplexer with TRI-STATE Outputs

Literature Number: SNOS178A

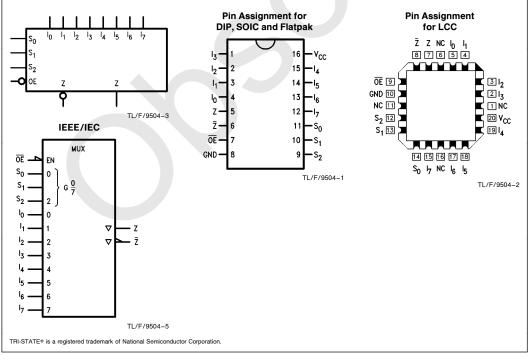
54F/74F251A 8-Input Multiplexer with TRI-STATE® Outputs

General Description

The 'F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Features

- Multifunctional capability
- On-chip select logic decoding
- Inverting and non-inverting TRI-STATE outputs


Commercial	Military	Package Number	Package Description
74F251APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F251ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F251ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F251ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F251AFM (Note 2)	W16A	16-Lead Cerpack
	54F251ALL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9504

RRD-B30M75/Printed in U. S. A.

54F/74F251A 8-Input Multiplexer with TRI-STATE Outputs

Unit Loading/Fan Out

		54F/74F							
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}						
$\frac{S_0 - S_2}{\overline{OE}}$	Select Inputs	1.0/1.0	20 µA/−0.6 mA						
ŌĒ	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA						
I ₀ -I ₇	Multiplexer Inputs	1.0/1.0	20 µA/−0.6 mA						
Z	TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)						
Z	Complementary TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)						

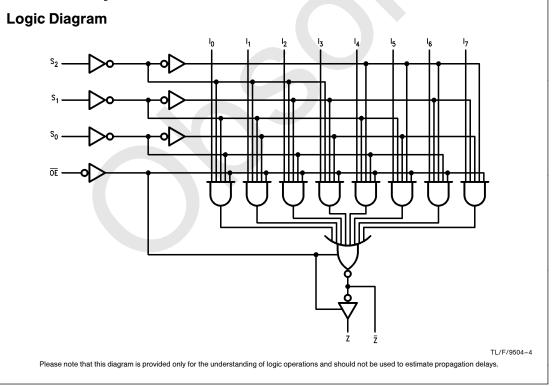
Functional Description

z

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Output Enable input $\overline{(OE)}$ is active LOW. When it is activated, the logic function provided at the output is:

$$\begin{split} = &\overline{\mathsf{OE}} \bullet (\mathsf{I}_0 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_1 \bullet \mathsf{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \\ & \mathsf{I}_2 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_3 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \\ & \mathsf{I}_4 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_5 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \\ & \mathsf{I}_6 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_7 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2) \end{split}$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.


Truth Table

	Inp	Outputs			
ŌĒ	S ₂	S ₁	S ₀	Ī	z
н	х	х	Х	Z	Z
L	L	L	L	Īo	Io
L	L	L	н	Ī	l1
L	L	н	L	Ī2	l ₂
L	L	н	н	Ī3	I ₃
L	н	L	L	Ī4	14
L	н	L	Н	Ī5	I ₅
L	н	Н	L	Ī ₆	I ₆
L	н	н	Н	Ī7	۱ ₇

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. + 15000 C+

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE Output	-0.5V to +5.5V

Current Applied to Output

Commercial

Supply Voltage Military

Commercial

in LOW State (Max)

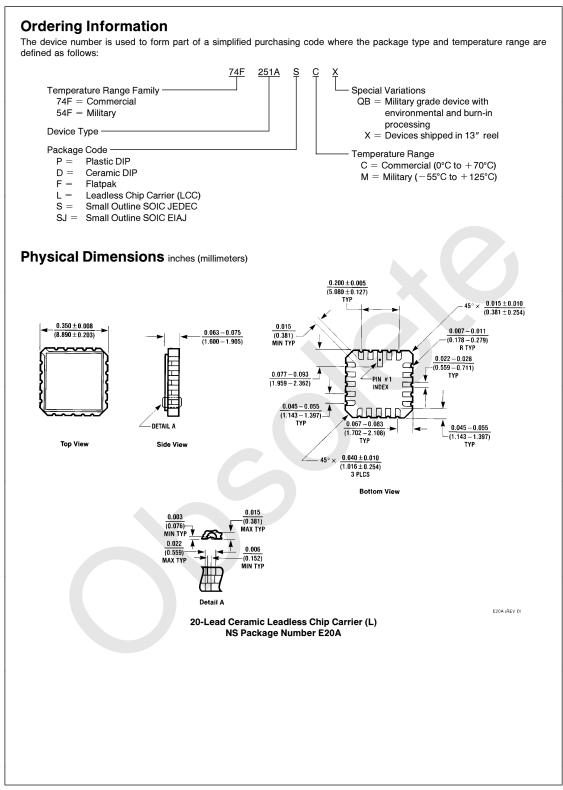
twice the rated I_{OL} (mA)

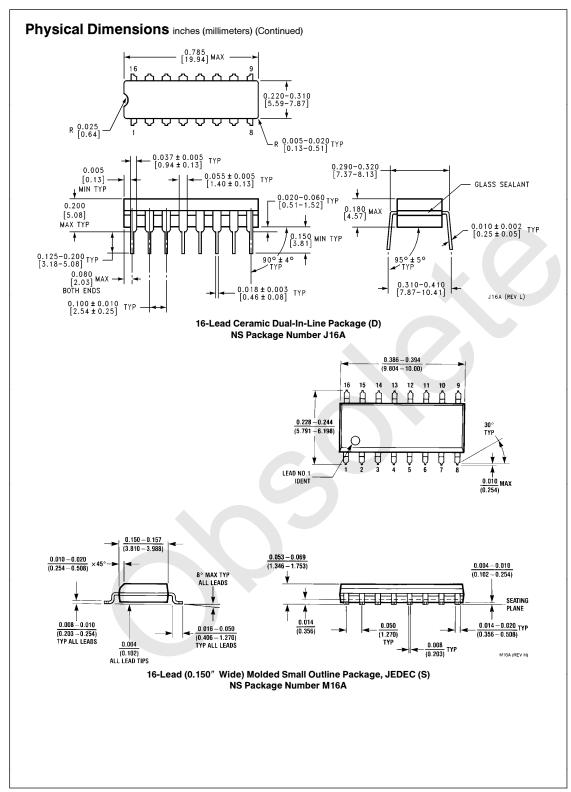
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

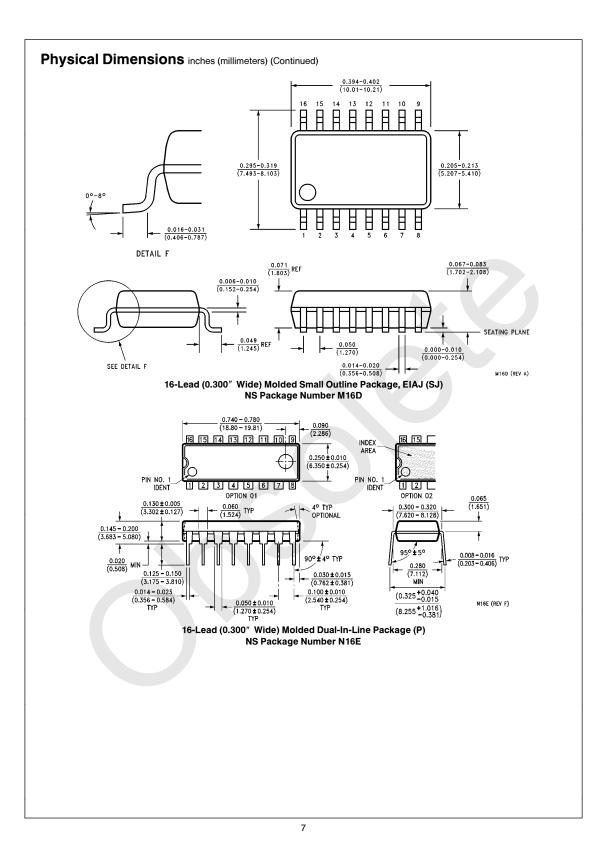
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

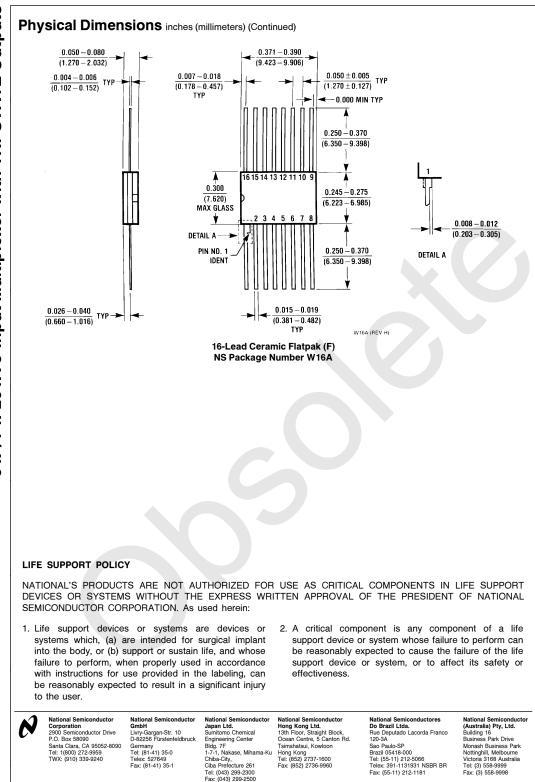
Recommended Operating Conditions

Free Air Ambient Temperature Military


-55°C to +125°C $0^{\circ}C$ to $\,+\,70^{\circ}C$


+4.5V to +5.5V $+\,4.5V$ to $\,+\,5.5V$


DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	Vcc	Conditions	
oyinibor			Min	Тур Мах		Units	VCC	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signa	
V _{CD}	Input Clamp Diode Volta	age			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			v	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
Ι _{ΙL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Curren	t			50	μΑ	Max	$V_{OUT} = 2.7V$	
I _{OZL}	Output Leakage Curren	t			-50	μΑ	Max	$V_{OUT} = 0.5V$	
l _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$	
I _{CCL}	Power Supply Current			15	22	mA	Max	$V_{O} = LOW$	
I _{CCZ}	Power Supply Current			16	24	mA	Max	V _O = HIGH Z	

		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 pF$			54F T _A , V _{CC} = Mil C _L = 50 pF		74	4F	
Symbol	Parameter						T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Мах	
t _{PLH} t _{PHL}	Propagation Delay S_n to \overline{Z}	3.5 3.2	6.0 5.0	9.0 7.5	3.5 3.2	11.5 8.0	3.5 3.2	9.5 7.5	ns
t _{PLH} t _{PHL}	Propagation Delay S _n to Z	4.5 4.0	7.5 6.0	10.5 8.5	3.5 3.0	14.0 10.5	4.5 4.0	12.5 9.0	ns
t _{PLH} t _{PHL}	Propagation Delay I_n to \overline{Z}	3.0 1.5	5.0 2.5	6.5 4.0	2.5 1.5	8.0 6.0	3.0 1.5	7.0 5.0	ns
t _{PLH} t _{PHL}	Propagation Delay I _n to Z	3.5 3.5	5.0 5.5	7.0 7.0	2.5 3.5	9.0 9.0	2.5 3.5	8.0 7.5	ns
t _{PZH} t _{PZL}	Output Enable Time \overline{OE} to \overline{Z}	2.5 2.5	4.3 4.3	6.0 6.0	2.0 2.5	7.0 7.5	2.5 2.5	7.0 6.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time \overline{OE} to \overline{Z}	2.5 1.5	4.0 3.0	5.5 4.5	2.5 1.5	6.0 5.0	2.5 1.5	6.0 4.5	
t _{PZH} t _{PZL}	Output Enable Time \overline{OE} to Z	3.5 3.5	5.0 5.5	7.0 7.5	3.0 3.5	8.5 9.0	3.0 3.5	7.5 8.0	
t _{PHZ} t _{PLZ}	Output Disable Time OE to Z	2.0 1.5	3.8 3.0	5.5 4.5	2.0 1.5	5.5 5.5	2.0 1.5	5.5 4.5	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated