

PART NUMBER

54LS610JDB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54LS610

Memory Mappers

Each 'LS610 memory-mapper integrated circuit contains a 4-line to 16-line decoder, a 16-word by 12-bit RAM, 16 channels of 2-line to 1-line multiplexers, and other miscellaneous circuitry on a monolithic chip. Each 'LS610 and also contains 12 latches with an enable control.

The memory mappers are designed to expand a microprocessor's memory address capability by eight bits. Four bits of the memory address bus (see System Block Diagram) can be used to select one of 16 map registers that contain 12 bits each. These 12 bits are presented to the system memory address bus through the map output buffers along with the unused memory address bits from the CPU. However, addressable memory space without reloading the map registers is the same as would be available with the memory mapper left out. The addressable memory space is increased only by periodically reloading the map registers from the data bus. This configuration lends itself to memory utilization of 16 pages of 2(n - 4) registers each without reloading (n = number of address bits available from CPU).

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

© 2013 Rochester Electronics, LLC. All Rights Reserved 07112013

To learn more, please visit www.rocelec.com

- Expands 4 Address Lines to 12 Address Lines
 Designed for Paged Memory Mapping
 - Output Latches Provided on 'LS610 and 'LS611
- Choice of 3-State or Open-Collector Map Outputs
- Compatible with TMS9900 and Other Microprocessors

102.12	OUTPUTS	MAP
DEVICE	LATCHED	OUTPUT TYPE
'LS610	Yes	3-State
119SJ,	Yes	Open-Collector
'LS612	No	3-State
LS613	No	Open-Collector

description

Each 'LS610 through 'LS613 memory-mapper integrated circuit contains a 4-line to 16-line decoder, a 16-word by 12-bit RAM, 16 channels of 2-line to 1-line multiplexers, and other miscellaneous circuitry on a monolithic chip. Each 'LS610 and 'LS611 also contains 12 latches with an enable control. The memory mappers are designed to expand a microprocessor's memory address capability by eight bits. Four bits of the memory address bus (see System Block Diagram) can be used to system memory address bus through the map bits each. These 12 bits are presented to the map registers is the same as would be available with the memory mapper left out. The periodically reloading the map registers from the data bus. This configuration lends itself to memory utilization of 16 pages of $2^{(n-4)}$ registers each without reloading (n = number of select one of 16 map registers that contain 12 output buffers along with the unused memory addressable memory space without reloading the addressable memory space is increased only by address bits from the CPU. However, address bits available from CPU).

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per train action and the area instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1981. Texas Instruments Incorporated

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

2-59

SYSTEM BLOCK DIAGRAM

chip select ($\overline{\rm CS}$) is low. The data I/O takes place on the data bus DO thru D7. The map operation will output the contents of the map register selected by the map address inputs (MAO thru MA3) when $\overline{\rm CS}$ is high and $\overline{\rm MM}$ (map mode control) is low. The 'LS612 and 'LS613 output stages are transparent in this mode. These devices have four modes of operation: read, write, map, and pass. Data may be read from or loaded into the map register selected by the register select inputs (RSO thru RS3) under control of ${
m R}/{
m W}$ whenever while the 'LS610 and 'LS611 outputs may be transparent or latched. When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{MM}}$ are both high (pass mode), the address bits on MAO thru MA3 appear at MO8-MO11, respectively, (assuming appropriate latch control) with low levels in the other bit positions on the map outputs.

logic diagram (positive logic) **LSI Devices**

2

*15610 and 'LS612 have 3-state ($\overline{Q})$ map outputs. 'LS611 and 'LS613 have open collector (\underline{Q}) map outputs.

DESCRIPTION		I/O connections to data and control bus used for reading from and writing to the map register	selected by RS0-RS3 when CS is low. Mode controlled by R/W.	Register select inputs for I/O operations.	Read or write control used in I/O operations to select the condition of the data bus. When	high, the data bus outputs are active for reading the map register. When low, the data bus is	used to write into the register.	Strobe input used to enter data into the selected map register during I/O operations.	Chip select input. A low input level selects the memory mapper (assuming more than one	used) for an I/O operation.	Map address inputs to select one of 16 map registers when in map mode (MM low and CS	high).	Map outputs. Present the map register contents to the system memory address bus in the map	mode. In the pass mode, these outputs provide the map address data on MO8-MO11 and low	levels on MOO-MO7.	Map mode input. When low, 12 bits of data are transferred from the selected map register to	the map outputs. When high (pass mode), the 4 bits present on the map address inputs	MA0-MA3 are passed to the map outputs MO8-M011, respectively, while M00-M07 are set	low.	Map enable for the map outputs. A low level allows the outputs to be active while a high input	level puts the outputs at high impedance.	Latch enable input for the 'LS610 and 'LS611 (no internal connection for 'LS612 and 'LS613).	A high level will transparently pass data to the map outputs. A low level will latch the outputs.	5 V power supply and network ground (substrate) pins.
z	NAME	D0 thru D11		RS0 thru RS3	R/ W			STROBE	<u>cs</u>		MAO thru MA3		MO0 thru M011			<u>MM</u>				ME		υ		V _{CC} , GND
Id	NO.	7-12	29-34	36, 38, 1, 3	9.			ъ	4		35, 37, 39, 2		14-19,	22-27		13				21		28		40, 20

LSI Devices

TEXAS OF INSTRUMENTS

2-61

Supply voltage, VCC (see Note 1)
Input voltage: Data Bus I/O 5.5 V
All other inputs
Operating free-air temperature range: SN54LS610 through SN54LS613 55°C to 125°C
SN74LS610 through SN74LS613
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

SN54LS610, SN54LS612, SN74LS610, SN74LS612 Memory Mappers with 3-State Map Outputs

recommended operating conditions

I

		•		SN	54LS61	0	SN	74LS61	0		
				SN	54LS61	2	SN	74LS61	7	UNIT	
				NIW	MON	MAX	MIN	MON	MAX		
vcc	Supply voltage			4.5	£	5.5	4.75	5	5.25	^	
۷IH	High-level input voltage			2			2			>	
۷۱	Low-level input voltage					0.7			0.8	>	
-			OW			- 12			- 15		
но	High-level output current		۵			-			- 2.6	Ψ H	
_	4		ом			12			24		
OL	row-level output current		٥			4			8	₹E	
tAVCL	Address setup time (AV before C low)	'LS610 only	See Figure 2	30			30			su	
tSLSH	Duration of strobe input pulse			75			75			SU	
tCSLSL	CS setup time (CS low to strot	ie low)		20			20			su	
twLSL	R/\overline{W} setup time (R/\overline{W} low to st	robe low}		20			20			su	
tRVSL	RS setup time (RS valid to stro	be low)		20			20			su	
tovsh	Data setup time (D0-D11 valid	to strobe high)	See Figure 1	75			75			ns	
^t SHCSH	CS hold time (Strobe high to C	S high)		20			20			ns	ſ
tSHWH	R/W hold time (Strobe high to	R/W high)		20			20			su	V
tSHRX	RS hold time (Strobe high to R	S invalid)		20			20			ns	
tSHDX	Data hold time (Strobe high to	D0-D11 invalid)		20			20			ns	Se
TΑ	Operating free-air temperature			- 55		125	0		70	°C	9 0
											1

21 Devices

SN54LS610, SN54LS612, SN74LS610, SN74LS612 MEMORY MAPPERS WITH 3-STATE MAP OUTPUTS

Φ	
ŝ.	
ž	
ē	
Ħ	
s	
ŝ	
ž	
Ξ	
Φ	
P	
ī	
Ð	
5	
at	
ē	
đ	
e	
ينه ح	
ai	
ģ	
Fe	
-	
Ĩ.	
at	
ē	
6	
Ð	
ē	
č	
e	
2	
5	
မ္မ	
<u> </u>	
ē	
6	
ŝ	
Ë	
1s	
ē	
õ	
316	
Ë	
-0	
g	
Ē	÷
ũ	te te
-	2
-	-

PARAMETER	~	TE	ST CONDITION	Ist	SN54LS6	12	SN74LS6 SN74LS6	2 2	Ŋ
					MIN TYP [‡]	MAX	MIN TYP [‡]	МАХ	
×		VCC = MIN,	l = 18 mA			- 1.5		- 1.5	>
			V 3 V	10H = -3 mA	2.4		2.4		
			·∧ z = Hl∧	¹ OH = MAX	2		2		>
		vIL = MAA		IOH = MAX	2.4		2.4		
				loL = 12 mA	0.25	0.4	0.25	0.4	
DW		VCC = MIN,	$V_{IH} = 2 V_{i}$	loL = 24 mA			0.35	0.5	>
 		V _{IL} = MAX		loL = 4 mA	0.25	0.4	0.25	0.4	
2				loL = 8 mA			0.35	0.5	
		VCC = MAX,	V _{IH} = 2 V,			20		20	77
HZO		V _{IL} = MAX,	$V_0 = 2.7 V$			- ~		24	1
MO		VCC = MAX,	$V_{IH} = 2 V_{,}$			- 20		- 20	
	Ι	VIL = MAX,	$V_{0} = 0.4 V$			- 400		- 400	74
				V ₁ = 5.5 V		0.1		0.1	8
I All oth	hers		_	$V_{I} = 7 V$		0.1		0.1	-
HI		VCC = MAX,	VI = 2.7 V			20		20	1 rd
IL		VCC = MAX,	V ₁ = 0.4 V			- 0.4		- 0.4	ê
MO					- 40	-225	- 40	- 225	
los' D		VCC = MAX			- 30	- 130	- 30	- 130	Ê
			Outputs high		112	180	112	180	
		$V_{CC} = MAX$	Outputs low		112	180	112	180	Ê
•			Outputs disab	bed	150	230	180	230	

2

Δ
Z
G
5
Ľ.
đ
5
8
5
۲.
U.
ю 10
2
_
F
>
2
N
C
Õ
>
ŝ
Ęi.
is.
ē
5
ILG
å
<u> </u>
ŋ
Ë
<u>1</u>
ž
Ś

Γ	-	_													
		5	su	su	ъ	ns	ns	ŝ	su	S	ns	su	υS	su	лs
		MAX	50	35	75	5	65	ဓ	85	40		20	4	30	25
6490	212 2612	đγ	26	ຊ	33	ဗ္ဂ	38	-	48	22		39	22	13	4
	-	MIN													
ſ		MAX	50	35	75	50	65	30	85	40	40	70	40	30	25
0.00	LS610	ТΥР	28	20	49	32	42	19	56	25	24	46	24	19	4
		MIN													
	TEET CONDITIONS			$R_{L} = 2 k\Omega$,	See Figure 1,	See Notes 2 and 3				D 667.0		See Figure 2,	200 INDES 7 810		•
	10	(OUTPUT)	D0-11	D0-11	D0-11	D0-11	D0-11	M00-11	MO0-11	M00-11	MO0-11	M00-11	M00-11	MO8-11	MO0-11
	FROM	(INPUT)	<u>cs</u> t	R/W1	RS	R/W1	<u>C5</u> ↑	TEM	<u>cs</u> t	1 <u>MM</u>	t	MA	MM1	MA	MEt
		PAHAMELER	SLDV Access (enable) time	HDV Access (enable) time	/DV Access time	LDZ Disable time	SHDZ Disable time	QV Access (enable) time	SHQV Access time	LOV Access time	HOV Access time	VQV1 Access time (MM low)	HQV Access time	Propagation time VOV2 (<u>MM</u> high)	40Z Disable time

NOTES: 2. Access times are tested as tpLH and tpHL or tpZH or tpZL. Disable times are tested as tpHZ and tpLZ. 3. Load circuits and voltage waveforms are shown in Section 1.

TEXAS STANDENTS

SN54LS611, SN54LS613, SN74LS611, SN74LS613 Memory Mappers with Open-Collector Map Outputs

recommended operating conditions

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				S	154LS61	÷	SNT	74LS61	Ę		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				S	154LS61	3	SN	74LS61		UNIT	
Image: Network interpretation interpretatio				NIN	MON	MAX	MIN	MON	MAX		
Amode 2 2 0.1 V Mo 5.5 0.8 V D 1 2.6 mA Mo 12 2.4 mA Mo 12 2.4 mA Mo 12 2.4 mA Mo 12 30 30 ns 12 20 20 30 ns 1 20 20 20 ns 1 20 20 0 ns 1 20 20 10 ns <td></td> <td></td> <td></td> <td>4.5</td> <td>ъ</td> <td>5.5</td> <td>4.75</td> <td>2</td> <td>5.25</td> <td>></td> <td></td>				4.5	ъ	5.5	4.75	2	5.25	>	
M0 0.7 0.8 V D				2			2			>	
M0 5.5 V D D -1 5.5 V M0 12 -2.6 MA D D -2.6 MA M0 12 -2.6 MA D T 4 m<-2.6						0.7			0.8	>	
			МО			5.5			5.5	>	
M0 12 24 ThA D D 4 24 ThA Inly See Figure 2 30 30 ns 75 75 75 ns ns 20 20 20 10 ns 21 75 75 ns ns 22 20 20 ns ns 20 20 20 ns ns Nulk1 75 75 ns ns 20 20 20 20 ns ns 20 20 20 20 ns ns 20 20 20 75 ns ns 20 20 20 0 70 ns			٥			- 1			- 2.6	тA	
D D 4 8 MM nly See Figure 2 30 30 ns 75 75 75 ns 75 75 75 ns 20 20 20 ns 20 20 20 ns 10h 20 20 ns 10h 20 20 ns 10h 20 20 ns 20 20 0 0 0			MO			12			24	•	
I/y See Figure 2 30 30 ns 75 75 75 ns ns 75 75 75 ns ns 20 20 20 20 ns 10h 20 20 20 ns 20 20 20 20 ns 20 20 20 0 ns 20 20 20 ns ns 20 20 20 0 ns			D			4			80	A H	
75 75 75 ns 20 20 20 ns 20 20 20 ns 20 20 20 ns ight 5se Figure 1 75 ns 20 20 20 ns 20 20 75 ns 20 20 20 ns 20 20 20 ns 20 20 0 ns atiot 20 20 ns 20 20 20 ns 50 75 0 70	'LS611 on	.×	See Figure 2	30			30			ns	
20 20 ns 20 20 20 ns gh1 20 20 ns gh1 75 75 ns 20 20 20 ns gh1 20 20 ns 20 20 20 ns 20 20 20 ns 20 20 ns ns 20 20 20 ns 20 20 70 ns				75			75			ns	
20 20 ns 20 20 ns 20 20 ns 75 75 ns 20 20 ns	e low)			20			20			ns	
20 20 ns 9h1 75 75 ns 20 20 20 ns 20 20 20 ns 20 20 20 ns 20 20 ns ns 20 20 20 ns alid) -55 125 0 70 0	obe low)			20			20			ns	
ight See Figure 1 75 ns 20 20 20 ns alidity 55 125 0 70 °C	e law)			20			20			ыs	
20 20 ns 20 20 20 ns -55 125 0 70 nc	o strobe h	(hgi	See Figure 1	75			75			su	
20 20 ns 20 20 20 ns 20 20 20 ns 20 20 20 ns -55 125 0 70 PC	i high)			20			20			su	
valid) 20 20 20 ns -55 125 0 70 PC	(/ <u>W</u> high)			20			20			su	
valid) 20 20 ns -55 125 0 70 °C	invalid)			20			20			ns	
-55 125 0 70 °C	110-00	nvalid)		20			20			ns	
				- 55		125	0		70	ပိ	

LSI Devices

SN54LS611, SN54LS613, SN74LS611, SN74LS613 Memory Mappers with Open-Collector Map Outputs

vise	
otherw	
(unless	
range	
temperature	
free-air	
operating	
recommended	
over	
characteristics	
electrical	noted)

PARA	METER	TES	st conditions [†]	SN54LS611 SN54LS613	SN74LS613	NN.
				MIN TYP [‡] MAX	MIN TYP [‡] MAX	
VIK		VCC = MIN,	l ₁ = -18 mA	- 1.5	- 1.5	>
нол		VCC = MIN,	$V_{IH} = 2 V,$	2.4	2.4	>
		VIL = MAX,	IOH = MAX			
но	MO	VCC = MIN,	$V_{IH} = 2 V, V_{OH} = 5.5 V$	0.1	0.1	шA
	OM O		OL = 12 mA	0.25 0.4	0.25 0.4	
	0	VCC = MIN,	$V_{IH} = 2 V, \frac{1}{0}L = 24 mA$		0.35 0.5	>
^OL	6	VIL = MAX	$I_{OL} = 4 mA$	0.25 0.4	0.25 0.4	>
	2		10L = 8 mA		0.35 0.5	
		VCC = MAX,	$V_{H} = 2 V,$	00	00	\
HZO'	2	$V_{IL} = MAX$	$V_0 = 2.7 V$	07	22	(
Ē		VCC = MAX,	$V_{IH} = 2 V_{,}$	-0.4	-04	Ρm
UZL	2	$V_{0} = 0.4 V$		1.0		
-	٥	Vee - MAY	VI = 5.5 V	0.1	0.1	γœ
-	All others		$V_{I} = 7 V$	0.1	0.1	
HI1		VCC = MAX,	$V_{ } = 2.7 V$	20	20	μA
lıL		VCC = MAX,	$V_{1} = 0.4 V$	- 0.4	- 0.4	۹m
los [§]	Ω	VCC = MAX		- 30 - 130	- 30 - 130	{
			Outputs high	100 170	100 170	
lcc		V _{CC} = MAX	Outputs low	100 170	100 170	٩W
			Outputs disabled	110 200	110 200	

2

								_							
UNIT		ns	S	лs	su	su	su	su	su	ns	ns	su	su	ŝ	
LS613	MAX	50	35	75	50	65	30	90	40		70	50	30	25	
	түр	28	21	47	31	40	19	53	25		44	31	20	15	
	MIN														
	MAX	50	35	75	50	65	30	90	40	45	70	50	30	25	
L1981.	τYΡ	31	23	51	32	41	21	57	25	30	47	31	21	15	
	NIN	-													
DISOTTOTION CONT	TEST CONDITIONS		RL = 2 kΩ, See Figure 1, See Notes 2 and 3					RL = 667 Ω, See Figure 2, See Notes 2 and 3							
T0	(OUTPUT)	D0-11	D0-11	D0-11	D0-11	D0-11	M00-11	M00-11	M00-11	M00-11	M00-11	M00-11	M08-11	M00-11	
FROM	(INPUT)	<u>cs</u> 1	R/W1	RS	R/W1	<u>cs</u> t	<u>Me</u> t	CS1	1WW	ct	MA	MM1	MA	ME†	
	PARAMETER		Access (enable) time	Access time	Disable time	Disable time	Access (enable) time	Access time	Access time	Access time	Access time (MM low)	Access time	Propagation time (MM high)	Disable time	
		tCSLDV	tWHDV	tRVDV	twLDZ	tCSHDZ	tELQV	tCSHQV	tMLQV	tCHQV	tAVQV1	tMHQV	tavov2	tEHQZ	

NOTES: 2. Access times are tested as tpLH and tpHL or tpZH or tpZL. Disable times are tested as tpHZ and tpLZ. 3. Load circuits and voltage waveforms are shown in Section 1.

explanation of letter symbols

This data sheet uses a new type of letter symbol based on JEDEC Standard 100 to describe time intervals. The format is:

tAB-CD

where: subscripts A and C indicate the names of the signals for which changes of state or level or establishment of state or level constitute signal events assumed to occur first and last, respectively, that is, at the beginning and end of the time interval. Subscripts B and D indicate the direction of the transitions and/or the final states or levels of the signals represented by A and C, respectively. One or two of the following is used:

- H = high or transition to high
 - low or transition to low _
- a valid steady-state level >
- X = unknown, changing, or ''don't care'' level Z = high-impedance (off) state.
 - high-impedance (off) state.

The hyphen between the B and C subscripts is omitted when no confusion is likely to occur. For these letter symbols on this data sheet, the signal names are further abbreviated as follows:

FIGURE 2. MAP AND PASS MODES

