

Low-Drift, Low-Power, Small-Footprint Series Voltage Reference

1 Features

• Initial accuracy: ±0.15% Maximum

 Temperature coefficient: 15ppm/°C Maximum from -40°C to +125°C

• Operating temperature range: -40°C to +125°C

Output current: ±10 mA

Low quiescent current: 125 μA

Ultra-low zero load dropout voltage: 200 mV

Input voltage: 2.7 ~ 5.5 V

• Output 1/f noise (0.1 Hz to 10 Hz): 15 μVp-p/V

• Long-term stability: 45 ppm/1000 hrs

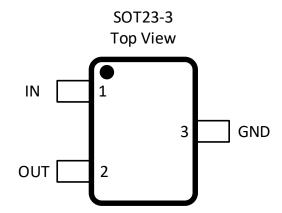
Small footprint 3 pin SOT-23 package pinouts:

2 Applications

Factory Automation: PLC/Transmitters/DCS

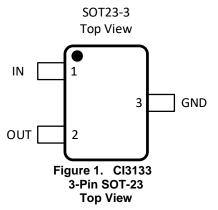
Test Measurement Equipment

Servo driver and Invertor


Precision Reference for MCU's internal ADC/DAC

Device Information

PART NAME	PACKAGE (PIN)(1)	BODY SIZE (NOM)	
Cl3133	SOT-23 (3)	2.90 mm × 1.30 mm	


(1) For all available packages, see the orderable addendum at the end of the data sheet

PIN Configuration

5 Pin Configuration and Functions

Table 1. Pin Functions

PIN		TYPE	DESCRIPTION
NAME	PIN	TIPE	DESCRIPTION
IN	1	Power	Input supply voltage connection.
OUT	2	Output	Reference voltage output connection.
GND	3	Ground	Ground connection.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	•	MIN	MAX	UNIT
Input voltage	IN	-0.3	5.5	V
Output voltage	V _{OUT}	-0.3	5.5	V
Output short circuit current	I _{sc}		30	mA
Operating temperature range	T _A	-55	150	$^{\circ}$
Storage temperature range	Tstg	-60	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. These are stress ratings only and functional operation of the device at these or any other conditions beyond those specified in the Electrical Characteristics Table is not implied.

6.2 ESD Ratings

			VALUE	UNIT
V	Flootrootatic discharge	Human-body model (HBM), per ANSI/ESDA/ JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
IN	Input voltage	V _{OUT} + V _{DO} ⁽¹⁾		5.5	٧
I _L	Output current	-10		10	mA
T _A	Operating Temperature	-40	25	125	$^{\circ}$

⁽¹⁾ V_{DO} = Dropout voltage

6.4 Thermal Information

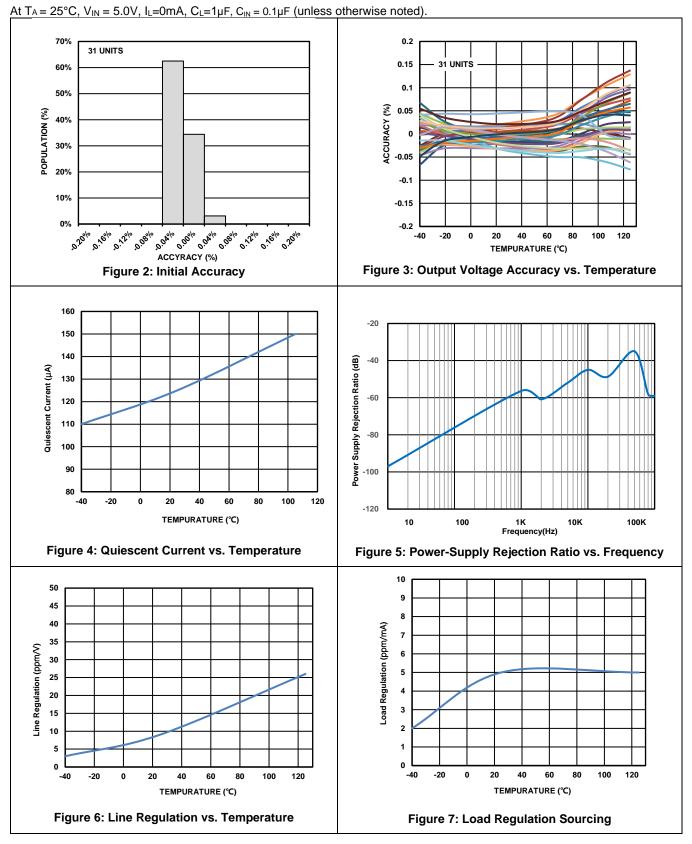
THERMAL METRIC		SOT23-3	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	285	°C/W
R _{θJC} (top)	Junction-to-case (top) thermal resistance	115	°C/W

6.5 Electrical Characteristics

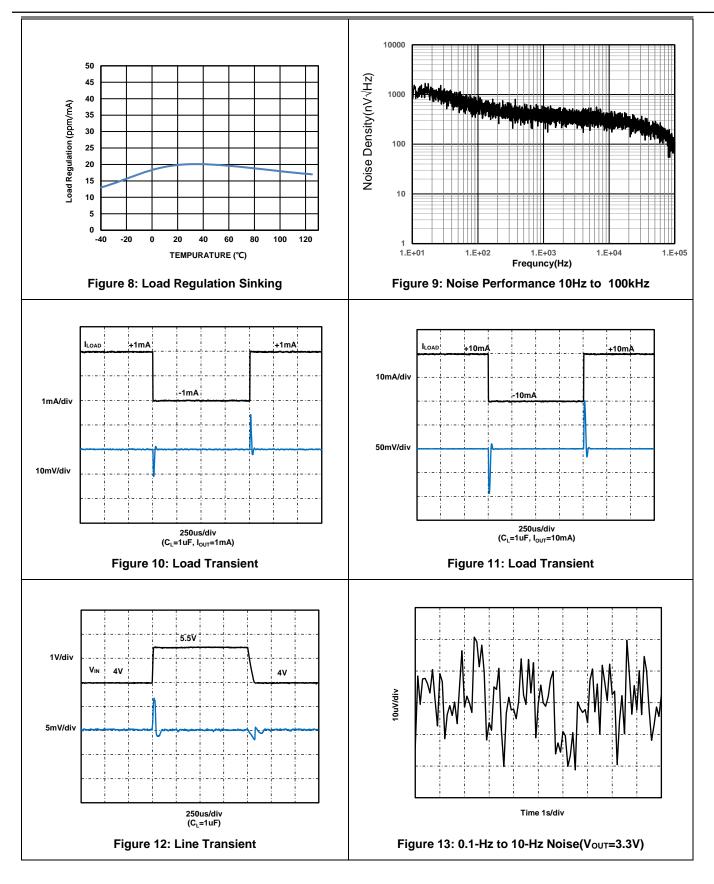
At $V_{IN} = V_{OUT} + V_{DO}$, $C_L = 1~\mu F$, $C_{IN} = 0.1~\mu F$, $I_L = 0~mA$, minimum and maximum specifications at $T_A = -40^{\circ}C$ to 125°C;

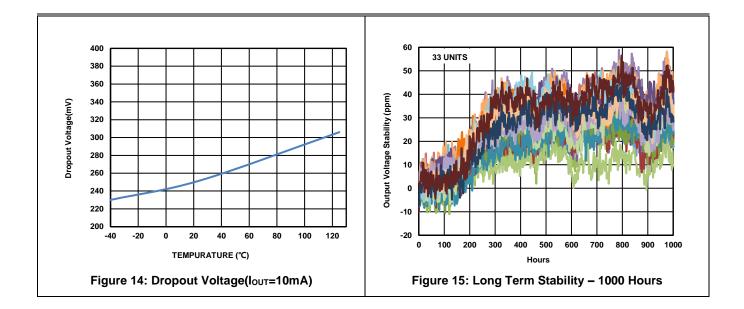
Typical specifications at $T_A = 25$ °C (Unless otherwise noted).

PARAMETER		1	EST CONDITIONS		MIN	TYP	MAX	UNIT	
ACCURAC	Y AND DRIFT					•		•	
	Output voltage	T _A = 25°C	T _A = 25°C			3.300		V	
	Output voltage accuracy	T _A = 25°C			-0.15		+0.15	%	
	Output voltage temperature coefficient	-40°C ≤ T _A ≤	-40°C ≤ T _A ≤ 125°C			10	15	ppm/°C	
LINE & LO	AD REGULATION								
$\Delta V_{O}/\Delta V_{IN}$	Line Regulation	V _{IN} = V _{OUT} + V	_{DO} ⁽²⁾ to 5.5	5 V		15		ppm/V	
A) / /A1	Lead Demiletter	$I_L = 0 \text{ mA to } 1000 \text{ mg}$ = $V_{OUT} + V_{DO}$		T _A = 25°C, Sourcing		5			
$\Delta V_{O}/\Delta I_{L}$	Load Regulation	$I_L = 0 \text{ mA} - 10$ $V_{IN} = V_{OUT} + V_{II}$	$I_L = 0 \text{ mA} - 10\text{mA},$ $T_L = 25^{\circ}\text{C}$ Sinking		20		ppm/mA		
I _{SC}	Short circuit current		$V_{OUT} = 0 \text{ V at } T_A = 25^{\circ}\text{C}$ 30			mA			
NOISE									
e _{np-p}	Low frequency noise	0.1Hz ≤ f ≤ 1	0Hz			15		µV _{P-P} /V	
e _n	Integrated wide band noise	10Hz ≤ f ≤ 10)kHz		40		μV _{rms}		
LONG TER	M STABILITY AND HYSTER	RESIS							
	Long-term stability	SOT23-3 Package	0 to	1000h at 25°C		45		ppm	
	Output voltage thermal	SOT23-3		C, -40°C,125°C, C Cycle 1	120				
	hysteresis	Package 25°C, -40°C,125°C, 25°C Cycle 2		60		ppm			
TURN-ON	ГІМЕ								
t _{ON}	Turn-on time	0.1% of output voltage settling, $C_L = 10 \mu F$			5		ms		
CAPACITIV	'E LOAD	1			I			. 1	



C _L	Stable output capacitor range	-40°C ≤ TA ≤ 125°C	≤ TA ≤ 125°C 0.1		μF	
POWER S	POWER SUPPLY					
V _{IN}	Input voltage		V _{OUT} + V _{DO}	5.5	V	
IL	Output current capacity	$V_{IN} = V_{OUT} + V_{DO}$ to 5.5 V	-10	10	mA	
IQ	Quiescent current		125		μΑ	
V	Dropout voltage	I _L = 0 mA	160			
V_{DO}	Dropout voltage	I _L = 10 mA	250		mV	


 ⁽¹⁾ Temperature drift is specified according to the box method.
 (2) V_{DO} for line regulation test is 300 mV.
 (3) V_{DO} for load regulation test is 500 mV.


6.6 Typical Characteristics

7 Parameter Measurement Information

7.1 Long-Term Stability

One of the key parameters of the CI3133 references is long-term stability. Typical characteristic expressed as: **Figure 15** shows the typical drift value for the CI3133 is 45 ppm from 0 to 1000 hours. This parameter is characterized by measuring 31 units at regular intervals for a period of 1000 hours. It is important to understand that long-term stability is not ensured by design and that the output from the device may shift beyond the typical 30 ppm specification at any time. For systems that require highly stable output voltages over long periods of time, the designer should consider burning in the devices prior to use to minimize the amount of output drift exhibited by the reference over time.

7.2 Power Dissipation

The CI3133 voltage references are capable of source and sink up to 10 mA of load current across the rated input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage and load current must be carefully monitored to ensure that the device does not exceeded its maximum power dissipation rating. The maximum power dissipation of the device can be calculated with Equation 1:

$$T_{J} = T_{A} + P_{D} \times R_{\theta J A} \tag{1}$$

where

- P_D is the device power dissipation
- T_J is the device junction temperature
- T_A is the ambient temperature
- R_{0JA} is the package (junction-to-air) thermal resistance

Because of this relationship, acceptable load current in high temperature conditions may be less than the maximum current-sourcing capability of the device. In no case should the device be operated outside of its maximum power rating because doing so can result in premature failure or permanent damage to the device.

7.3 Noise Performance

Typical 0.1-Hz to 10-Hz voltage noise can be seen in **Figure 16**. Device noise increases with output voltage and operating temperature. Additional filtering can be used to improve output noise levels, although care must be taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise measurement setup is shown in **Figure 16**.

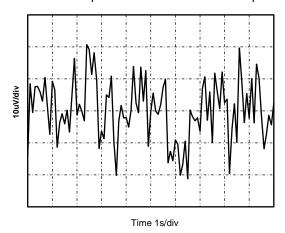


Figure 16: 0.1-Hz to 10-Hz Noise(Vout=3.3V)

8 Detailed Description

8.1 Overview

The Cl3133 is family of low-noise, precision bandgap voltage references that are specifically designed for excellent initial voltage accuracy and drift. The section 8.2 is a simplified block diagram of the Cl3133 showing basic band-gap topology.

8.2 Functional Block Diagram

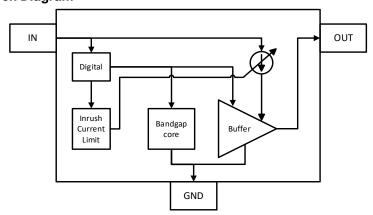


Figure 17: Functional Block Diagram

8.3 Feature Description

8.3.1 Supply Voltage

The Cl3133 reference features an extremely low dropout voltage. For loaded conditions, a typical dropout voltage versus load is shown on the front page. The Cl3133 features a low quiescent current that is extremely stable over changes in both temperature and supply. The typical room temperature quiescent current is 125 μ A, and the maximum quiescent current over temperature is just 150 μ A. Supply voltages below the specified levels can cause the Cl3133 to momentarily draw currents greater than the typical quiescent current. Use a power supply with a fast rising edge and low output impedance to easily prevent this issue.

8.3.2 Low Temperature Drift

The Cl3133 is designed for minimal drift error, which is defined as the change in output voltage over temperature. The drift is calculated using the box method, as described by Equation 2. For this equation, VREF is VOUT which is the output voltage seen at the junction of OUT_F and OUT_S.

Drift =
$$\left(\frac{V_{REF(MAX)} - V_{REF(MIN)}}{V_{REF(25^{\circ})} \times \text{Temperature Range}}\right) \times 10^{6}$$
 (2)

8.3.3 Load Current

The Cl3133 is specified to deliver a current load of ± 10 mA per output. The device temperature increases according to Equation 3:

$$T_{J} = T_{A} + P_{D} \times R_{\theta J A} \tag{3}$$

where

- P_D is the device power dissipation
- T_J is the device junction temperature
- T_A is the ambient temperature
- R_{0JA} is the package (junction-to-air) thermal resistance

8.4 Device Functional Modes

8.4.1 Negative Reference Voltage

For applications requiring a negative and positive reference voltage, the CI3133 can be used to provide a dual-supply reference from a 5V supply. **Figure 18** shows the CI3133 used to provide a 3.3V supply reference voltage. Take care to match the temperature coefficients of R1 and R2.

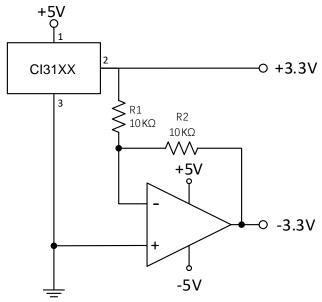


Figure 18: CI 3133 Create Positive and Negative Reference Voltages

8.4.2 Power Supply Recommendations

The CI3133 family of references feature an extremely low-dropout voltage. These references can be operated with a supply of only 250 mV above the output voltage. **Figure 19** shows typical connections required for operation of the CI3133. Sensilicon recommends a supply bypass capacitor ranging between 0.1 μ F to 10 μ F.

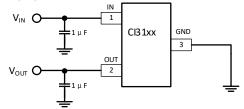


Figure 19: Typical Connections for Operating CI3133

9 Layout

9.1 Layout Guidelines

Figure 20 illustrates an example of a PCB layout for a data acquisition system using the CI3133. Some key considerations are:

- Connect low-ESR, 0.1-µF ceramic bypass capacitors at IN, OUT_F, VOUT of the CI 3133.
- Decouple other active devices in the system per the device specifications.
- Using a solid ground plane helps distribute heat and reduce electromagnetic interference(EMI)noise pickup.
- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary.

9.2 Layout Example

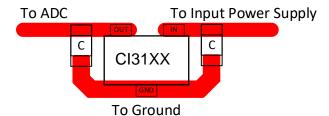
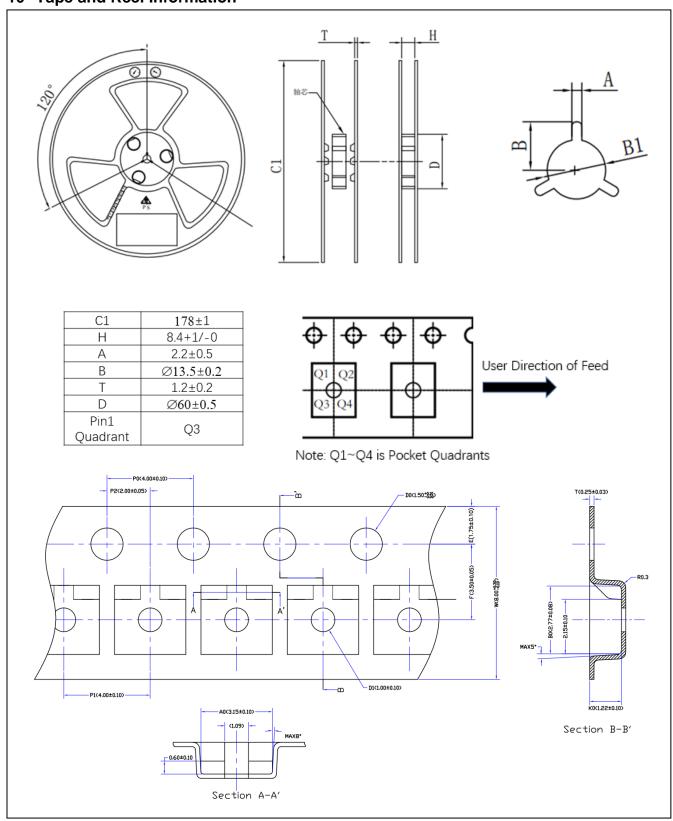
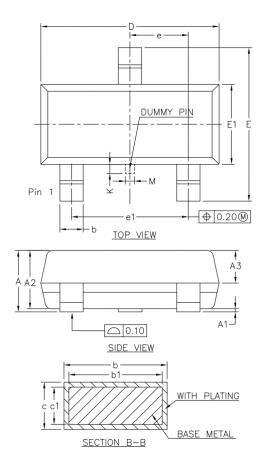
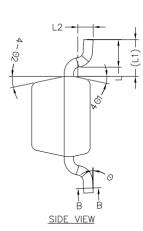



Figure 20: CI 3133 PCB Layout Example




10 Tape and Reel Information

11 Package Information

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	0.89	_	1.12
A1	0.01	_	0.10
A2	0.88	0.95	1.02
A3	0.43	0.53	0.63
b	0.36	_	0.50
b1	0.35	0.38	0.45
С	0.14	_	0.20
c1	0.14	0.15	0.16
D	2.80	2.90	3.00
E	2.35	2.50	2.64
E1	1.20	1.30	1.40
е	0.90	0.95	1.00
e1	1.80	1.90	2.00
L	0.40	0.45	0.60
L1		0.60REF	
L2		0.25BSC	
М	0.10	0.15	0.25
K	0	_	0.25
Θ	0,	_	8°
Θ1	10°	12°	14°
Θ2	10°	12°	14°